The role of brain oscillations in feature integration

特征(语言学) 幻觉 心理学 认知心理学 感知 多传感器集成 期望理论 模式识别(心理学) 信息集成 人工智能 感觉系统 计算机科学 神经科学 社会心理学 数据挖掘 哲学 语言学
作者
María I. Cobos,María Melcón,Pablo Rodríguez-San Esteban,Almudena Capilla,Ana B. Chica
出处
期刊:Psychophysiology [Wiley]
卷期号:61 (3): e14467-e14467 被引量:3
标识
DOI:10.1111/psyp.14467
摘要

Abstract Our sensory system is able to build a unified perception of the world, which although rich, is limited and inaccurate. Sometimes, features from different objects are erroneously combined. At the neural level, the role of the parietal cortex in feature integration is well‐known. However, the brain dynamics underlying correct and incorrect feature integration are less clear. To explore the temporal dynamics of feature integration, we studied the modulation of different frequency bands in trials in which feature integration was correct or incorrect. Participants responded to the color of a shape target, surrounded by distractors. A calibration procedure ensured that accuracy was around 70% in each participant. To explore the role of expectancy in feature integration, we introduced an unexpected feature to the target in the last blocks of trials. Results demonstrated the contribution of several frequency bands to feature integration. Alpha and beta power was reduced for hits compared to illusions. Moreover, gamma power was overall larger during the experiment for participants who were aware of the unexpected target presented during the last blocks of trials (as compared to unaware participants). These results demonstrate that feature integration is a complex process that can go wrong at different stages of information processing and is influenced by top‐down expectancies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
说话要严谨完成签到 ,获得积分10
2秒前
滴滴答答完成签到 ,获得积分10
3秒前
眰晌完成签到 ,获得积分10
4秒前
侃侃完成签到,获得积分10
4秒前
于凡完成签到,获得积分10
4秒前
5秒前
5秒前
朴素的红牛完成签到,获得积分10
5秒前
夜行者完成签到,获得积分10
5秒前
6秒前
Xhhaai发布了新的文献求助10
6秒前
ranlan完成签到 ,获得积分10
6秒前
6秒前
bu完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
沉静早晨完成签到,获得积分20
7秒前
8秒前
8秒前
huhu发布了新的文献求助10
9秒前
科研通AI6.1应助豆豆采纳,获得10
9秒前
不想看文献完成签到,获得积分10
9秒前
汉堡包应助l_qw采纳,获得10
10秒前
李健应助哈哈哈采纳,获得10
10秒前
Sakura发布了新的文献求助10
12秒前
大模型应助大力的安阳采纳,获得30
12秒前
pluto应助小何采纳,获得10
13秒前
13秒前
文文发布了新的文献求助10
13秒前
大方小白发布了新的文献求助10
15秒前
充电宝应助exile77采纳,获得10
16秒前
huhu完成签到,获得积分10
16秒前
17秒前
科研通AI6.1应助眠航采纳,获得30
17秒前
19秒前
未老先衰医学生完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5782847
求助须知:如何正确求助?哪些是违规求助? 5672997
关于积分的说明 15459413
捐赠科研通 4912709
什么是DOI,文献DOI怎么找? 2644245
邀请新用户注册赠送积分活动 1591927
关于科研通互助平台的介绍 1546620