A comprehensive review on deep learning approaches for short-term load forecasting

计算机科学 波动性(金融) 稳健性(进化) 需求预测 需求响应 风险分析(工程) 持续性 运筹学 期限(时间) 工业工程 工程类 经济 计量经济学 业务 生态学 生物化学 化学 物理 电气工程 量子力学 生物 基因
作者
Yavuz Eren,İbrahim Beklan Küçükdemiral
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:189: 114031-114031 被引量:68
标识
DOI:10.1016/j.rser.2023.114031
摘要

The balance between supplied and demanded power is a crucial issue in the economic dispatching of electricity energy. With the emergence of renewable sources and data-driven approaches, demand-side or demand response (DR) programs have been applied to maintain this balance as accurately as possible. Short-term load forecasting (STLF) has a decisive impact on the success, sustainability, and performance of those programs. Forecasting customers' consumption over short or long time horizons allows distribution companies to establish new policies or modify strategies in terms of energy management, infrastructure planning, and budgeting. Deep learning (DL)-based approaches for STLF have been referenced for a long time, considering factors such as accuracy, various performance measures, volatility, and adverse effects of uncertainties in load demand. Hence, in this review, DL-based studies for the STLF problem have been considered. The studies have been classified by several titles, such as the provided method and main ideas, dataset specifications, uncertain-aware approaches, online solutions, and practical extensions to DR programs. The main contribution of this review is the ongoing exploration of STLF with DL models to reveal the research direction of the load forecasting problem in terms of the future-oriented integration of the key concepts of online, robustness, and feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助xiaoguoxiaoguo采纳,获得10
刚刚
1秒前
ll应助魔幻芒果采纳,获得10
1秒前
山川无恙发布了新的文献求助30
1秒前
1秒前
2秒前
七只狐狸发布了新的文献求助30
2秒前
wu发布了新的文献求助10
3秒前
甜蜜的雁凡完成签到,获得积分20
4秒前
6秒前
1177发布了新的文献求助10
6秒前
小平发布了新的文献求助10
7秒前
华仔应助tesla采纳,获得10
9秒前
汉堡包应助SHI采纳,获得10
11秒前
12秒前
胡一刀发布了新的文献求助10
13秒前
13秒前
13秒前
lsx发布了新的文献求助30
14秒前
114514发布了新的文献求助20
15秒前
Liu丰发布了新的文献求助10
16秒前
研友_VZG7GZ应助Ag666采纳,获得10
17秒前
Nicky发布了新的文献求助10
18秒前
悟格发布了新的文献求助30
18秒前
田様应助忧伤的宝马采纳,获得10
18秒前
Hello应助前进的光采纳,获得30
19秒前
Ava应助1177采纳,获得10
19秒前
常常在努力完成签到,获得积分10
21秒前
26秒前
沐屿宸发布了新的文献求助10
26秒前
小蘑菇应助科研通管家采纳,获得200
30秒前
科研通AI5应助科研通管家采纳,获得30
30秒前
李健应助科研通管家采纳,获得10
30秒前
科目三应助科研通管家采纳,获得10
30秒前
SYLH应助科研通管家采纳,获得30
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
31秒前
31秒前
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794706
求助须知:如何正确求助?哪些是违规求助? 3339486
关于积分的说明 10296205
捐赠科研通 3056183
什么是DOI,文献DOI怎么找? 1676910
邀请新用户注册赠送积分活动 804935
科研通“疑难数据库(出版商)”最低求助积分说明 762226