亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DP-FishNet: Dual-path Pyramid Vision Transformer-based underwater fish detection network

水下 计算机科学 人工智能 卷积神经网络 特征提取 棱锥(几何) 特征(语言学) 变压器 计算机视觉 模式识别(心理学) 数学 地质学 工程类 语言学 电压 几何学 哲学 海洋学 电气工程
作者
Yang Liu,Dong An,Yinjie Ren,Jian Zhao,Chi Zhang,Jiahui Cheng,Jincun Liu,Yaoguang Wei
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122018-122018 被引量:30
标识
DOI:10.1016/j.eswa.2023.122018
摘要

The detection of underwater fish targets is critical for ecological monitoring and marine biodiversity research. However, underwater fish detection is typically constrained by problems including low image quality and variable underwater surroundings. On behalf of further improving the underwater fish detection accuracy in complex underwater environments, this paper proposes a dual-path (DP) Pyramid Vision Transformer (PVT) feature extraction network named DP-FishNet. The backbone network DP-PVT composed from the PVT Network is made up of two feature extraction paths. The first represents the Vision Transformer path, which extracts global features to enhance the distinction between the foreground and background of underwater images. The second is the convolutional neural network path, which enhances the accuracy of detecting small targets by extracting local features. Additionally, to more effectively utilize the feature information extracted by the network, this paper provides a promising solution to employ the content-aware reassembly of features (Carafe) in the feature pyramid network (FPN). The seesaw loss is utilized as a classification loss to address the problem of unbalanced samples caused by the gap in the number of fish populations. According to the experimental findings, the AP and AP50 of the DP-FishNet are 76.0% and 95.2%, respectively. In comparison to currently available advanced two-stage detection algorithms, the quantity of computation and parameters is reduced by approximately 40%. DP-FishNet strengthens the ability to extract global and local features from underwater images and enhances feature reuse. DP-FishNet can be utilized to detect fish targets in actual and complicated underwater habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会厌完成签到 ,获得积分10
6秒前
桐桐应助张佳明采纳,获得20
8秒前
10秒前
大模型应助科研通管家采纳,获得10
10秒前
Glitter完成签到 ,获得积分10
11秒前
14秒前
17秒前
Zenglongying完成签到 ,获得积分10
27秒前
28秒前
张佳明发布了新的文献求助20
34秒前
林珍完成签到,获得积分10
41秒前
family完成签到,获得积分10
42秒前
49秒前
50秒前
50秒前
张佳明完成签到,获得积分10
51秒前
林珍发布了新的文献求助10
53秒前
kbcbwb2002完成签到,获得积分10
55秒前
57秒前
zzzzzz完成签到,获得积分10
1分钟前
zzzzzz发布了新的文献求助10
1分钟前
ding应助可靠的寻绿采纳,获得10
1分钟前
科研花完成签到 ,获得积分10
1分钟前
Maryamgvl关注了科研通微信公众号
1分钟前
重要纸飞机完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
ruhemann发布了新的文献求助10
1分钟前
F.T完成签到,获得积分10
1分钟前
彭于彦祖应助Ukuleleen采纳,获得20
1分钟前
隐形曼青应助怡然的宝莹采纳,获得10
1分钟前
1分钟前
Maryamgvl发布了新的文献求助10
1分钟前
Ukuleleen完成签到,获得积分20
1分钟前
古哉完成签到,获得积分10
1分钟前
不懂白完成签到 ,获得积分10
2分钟前
Hello应助lynn采纳,获得30
2分钟前
jyy完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792423
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281893
捐赠科研通 3053438
什么是DOI,文献DOI怎么找? 1675609
邀请新用户注册赠送积分活动 803592
科研通“疑难数据库(出版商)”最低求助积分说明 761468