DE-UFormer: U-shaped dual encoder architectures for brain tumor segmentation

计算机科学 编码器 分割 人工智能 卷积神经网络 变压器 深度学习 自编码 模式识别(心理学) 计算机视觉 物理 量子力学 电压 操作系统
作者
Yan Dong,Ting Wang,Chiyuan Ma,Zhenxing Li,Ryad Chellali
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (19): 195019-195019 被引量:1
标识
DOI:10.1088/1361-6560/acf911
摘要

Objective. In brain tumor segmentation tasks, the convolutional neural network (CNN) or transformer is usually acted as the encoder since the encoder is necessary to be used. On one hand, the convolution operation of CNN has advantages of extracting local information although its performance of obtaining global expressions is bad. On the other hand, the attention mechanism of the transformer is good at establishing remote dependencies while it is lacking in the ability to extract high-precision local information. Either high precision local information or global contextual information is crucial in brain tumor segmentation tasks. The aim of this paper is to propose a brain tumor segmentation model that can simultaneously extract and fuse high-precision local and global contextual information.Approach. We propose a network model DE-Uformer with dual encoders to obtain local features and global representations using both CNN encoder and Transformer encoder. On the basis of this, we further propose the nested encoder-aware feature fusion (NEaFF) module for effective deep fusion of the information under each dimension. It may establishe remote dependencies of features under a single encoder via the spatial attention Transformer. Meanwhile ,it also investigates how features extracted from two encoders are related with the cross-encoder attention transformer.Main results. The proposed algorithm segmentation have been performed on BraTS2020 dataset and private meningioma dataset. Results show that it is significantly better than current state-of-the-art brain tumor segmentation methods.Significance. The method proposed in this paper greatly improves the accuracy of brain tumor segmentation. This advancement helps healthcare professionals perform a more comprehensive analysis and assessment of brain tumors, thereby improving diagnostic accuracy and reliability. This fully automated brain model segmentation model with high accuracy is of great significance for critical decisions made by physicians in selecting treatment strategies and preoperative planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
double完成签到,获得积分10
刚刚
1秒前
wuyu发布了新的文献求助10
2秒前
yqy关注了科研通微信公众号
3秒前
4秒前
天边完成签到 ,获得积分10
6秒前
liu发布了新的文献求助10
6秒前
娴娴超爱笑完成签到,获得积分10
7秒前
dandna发布了新的文献求助10
8秒前
科研小卡拉米完成签到,获得积分10
9秒前
科研通AI5应助钟琪采纳,获得10
11秒前
人间枝头完成签到,获得积分10
11秒前
12秒前
顾矜应助满意的夜柳采纳,获得10
13秒前
希望天下0贩的0应助yj采纳,获得10
13秒前
14秒前
dddd完成签到,获得积分10
15秒前
海迪完成签到,获得积分10
16秒前
姜姜完成签到 ,获得积分10
17秒前
17秒前
背书强完成签到 ,获得积分10
18秒前
chenzao完成签到 ,获得积分10
18秒前
19秒前
19秒前
19秒前
小老板完成签到,获得积分10
21秒前
开心发布了新的文献求助10
22秒前
星辰大海应助KanmenRider采纳,获得10
22秒前
23秒前
科研通AI5应助出水的芙蓉采纳,获得30
23秒前
24秒前
和谐煜祺完成签到,获得积分10
24秒前
yj发布了新的文献求助10
25秒前
Rain完成签到,获得积分10
25秒前
27秒前
Captain发布了新的文献求助10
29秒前
小次之山发布了新的文献求助10
30秒前
30秒前
朱梅琳发布了新的文献求助10
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742