Ensemble Machine Learning Model Incorporating Radiomics and Body Composition for Predicting Intraoperative HDI in PPGL

医学 队列 背景(考古学) 逻辑回归 内科学 回顾性队列研究 曲线下面积 外科 生物 古生物学
作者
Yan Fu,Xueying Wang,Xiaoping Yi,Xiao Guan,Changyong Chen,Zaide Han,Guanghui Gong,Hongling Yin,Longfei Liu,Bihong T. Chen
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [Oxford University Press]
卷期号:109 (2): 351-360 被引量:4
标识
DOI:10.1210/clinem/dgad543
摘要

Abstract Context Intraoperative hemodynamic instability (HDI) can lead to cardiovascular and cerebrovascular complications during surgery for pheochromocytoma/paraganglioma (PPGL). Objectives We aimed to assess the risk of intraoperative HDI in patients with PPGL to improve surgical outcome. Methods A total of 199 consecutive patients with PPGL confirmed by surgical pathology were retrospectively included in this study. This cohort was separated into 2 groups according to intraoperative systolic blood pressure, the HDI group (n = 101) and the hemodynamic stability (HDS) group (n = 98). It was also divided into 2 subcohorts for predictive modeling: the training cohort (n = 140) and the validation cohort (n = 59). Prediction models were developed with both the ensemble machine learning method (EL model) and the multivariate logistic regression model using body composition parameters on computed tomography, tumor radiomics, and clinical data. The efficiency of the models was evaluated with discrimination, calibration, and decision curves. Results The EL model showed good discrimination between the HDI group and HDS group, with an area under the curve of (AUC) of 96.2% (95% CI, 93.5%-99.0%) in the training cohort, and an AUC of 93.7% (95% CI, 88.0%-99.4%) in the validation cohort. The AUC values from the EL model were significantly higher than the logistic regression model, which had an AUC of 74.4% (95% CI, 66.1%-82.6%) in the training cohort and an AUC of 74.2% (95% CI, 61.1%-87.3%) in the validation cohort. Favorable calibration performance and clinical applicability of the EL model were observed. Conclusion The EL model combining preoperative computed tomography-based body composition, tumor radiomics, and clinical data could potentially help predict intraoperative HDI in patients with PPGL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
好好完成签到,获得积分10
2秒前
斯文的芹菜完成签到 ,获得积分10
3秒前
souther完成签到,获得积分0
3秒前
3秒前
小谢完成签到,获得积分10
4秒前
tfsn20完成签到,获得积分0
4秒前
余健完成签到,获得积分10
4秒前
maxyer完成签到,获得积分10
6秒前
美好斓发布了新的文献求助10
7秒前
7秒前
8秒前
韭菜盒子发布了新的文献求助10
8秒前
小萝卜123发布了新的文献求助10
9秒前
毛哥看文献完成签到 ,获得积分10
11秒前
Ysn发布了新的文献求助10
12秒前
zzz完成签到,获得积分10
12秒前
毛舰完成签到 ,获得积分10
13秒前
Raine完成签到,获得积分10
13秒前
junio完成签到 ,获得积分10
13秒前
简单完成签到,获得积分10
13秒前
大模型应助韭菜盒子采纳,获得10
15秒前
张一完成签到,获得积分10
15秒前
三石完成签到,获得积分10
15秒前
李超完成签到,获得积分10
19秒前
1222333发布了新的文献求助10
20秒前
ice完成签到 ,获得积分10
20秒前
可靠月亮完成签到,获得积分10
21秒前
小潘完成签到 ,获得积分10
22秒前
Ysn完成签到,获得积分10
22秒前
蛋花肉圆汤完成签到,获得积分10
23秒前
充电宝应助liuzhen采纳,获得10
25秒前
和谐的冬莲完成签到 ,获得积分10
25秒前
27秒前
Jasper应助风生采纳,获得10
27秒前
const完成签到,获得积分10
28秒前
神奇的种子完成签到 ,获得积分10
29秒前
小林子完成签到,获得积分10
29秒前
hyw完成签到 ,获得积分10
30秒前
韭菜盒子发布了新的文献求助10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359404
关于积分的说明 10402536
捐赠科研通 3077257
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743