Transformer-Based Masked Autoencoder With Contrastive Loss for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 自编码 模式识别(心理学) 上下文图像分类 遥感 计算机视觉 图像(数学) 地质学 人工神经网络
作者
Xianghai Cao,Haifeng Lin,Shuaixu Guo,Tao Xiong,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:26
标识
DOI:10.1109/tgrs.2023.3315678
摘要

Recent years, in order to solve the problem of lacking accurately labeled hyperspectral image data, self-supervised learning has become an effective method for hyperspectral image classification. The core idea of self-supervised learning is to define a pretext task which helps to train the model without the labels. By exploiting both the information of the labeled and unlabeled samples, self-supervised learning shows enormous potential to handle many different tasks in the field of hyperspectral image processing. Among the vast amount of self-supervised methods, contrastive learning and masked autoencoder are well known because of their impressive performance. This article proposes a Transformer based masked autoencoder using contrastive learning (TMAC), which tries to combine these two methods and improve the performance further. TMAC has two branches, the first branch has an encoder-decoders structure, it has an encoder to capture the latent image representation of the masked hyperspectral image and two decoders where the pixel decoder aims to reconstruct the hyperspectral image at pixel-level and the feature decoder is built to extract the high-level feature of the reconstructed image. The second branch consists of a momentum encoder and a standard projection head to embed the image into the feature space. Then, by combining the output of feature decoder and the embedding vectors via contrastive learning to enhance the model's classification performance. According to the experiments, our model shows powerful feature extraction capability and gets outstanding results on hyperspectral image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
花心超人发布了新的文献求助10
1秒前
华仔应助祝你勇敢采纳,获得10
2秒前
共享精神应助祝你勇敢采纳,获得10
2秒前
Orange应助祝你勇敢采纳,获得10
2秒前
赘婿应助祝你勇敢采纳,获得10
2秒前
2秒前
花城完成签到,获得积分10
2秒前
2秒前
可爱的函函应助鲸鱼采纳,获得10
3秒前
李健应助diupapa采纳,获得10
3秒前
ln177发布了新的文献求助10
4秒前
lt完成签到,获得积分10
4秒前
司空乞完成签到 ,获得积分10
4秒前
心心完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
顺利小鸽子完成签到,获得积分10
6秒前
李爱国应助Rylynn采纳,获得10
7秒前
蒲蒲发布了新的文献求助10
8秒前
迷雾完成签到,获得积分10
9秒前
9秒前
9秒前
完美元柏完成签到,获得积分10
10秒前
kewell发布了新的文献求助10
10秒前
Cheng完成签到 ,获得积分10
11秒前
心心发布了新的文献求助10
11秒前
11秒前
诚心中恶完成签到,获得积分20
11秒前
12秒前
cdercder应助林儿采纳,获得10
13秒前
安安完成签到 ,获得积分10
13秒前
14秒前
suohaiyun完成签到,获得积分10
14秒前
辛勤雅容发布了新的文献求助10
14秒前
淘气科研完成签到,获得积分10
14秒前
14秒前
笨笨醉薇发布了新的文献求助10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842080
求助须知:如何正确求助?哪些是违规求助? 3384261
关于积分的说明 10533503
捐赠科研通 3104566
什么是DOI,文献DOI怎么找? 1709737
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773970