A meta-analysis of bulk RNA-seq datasets identifies potential biomarkers and repurposable therapeutics against Alzheimer’s disease

转甲状腺素 计算生物学 疾病 可药性 生物 下调和上调 生物标志物 生物信息学 基因 医学 遗传学 内科学 内分泌学
作者
Anika Bushra Lamisa,Ishtiaque Ahammad,Arittra Bhattacharjee,Mohammad Uzzal Hossain,Ahmed Ishtiaque,Zeshan Mahmud Chowdhury,Keshob Chandra Das,M. Salimullah,Chaman Ara Keya
标识
DOI:10.1101/2023.09.17.558173
摘要

Abstract Alzheimer’s disease (AD) poses a major challenge due to its impact on the elderly population and the lack of effective early diagnosis and treatment options. In an effort to address this issue, a study focused on identifying potential biomarkers and therapeutic agents for AD was carried out. Using RNA-Seq data from AD patients and healthy individuals, 12 differentially expressed genes (DEGs) were identified, with 9 expressing upregulation ( ISG15, HRNR, MTATP8P1, MTCO3P12, DTHD1, DCX, ST8SIA2, NNAT, and PCDH11Y ) and 3 expressing downregulation ( LTF, XIST, and TTR ). Among them, TTR exhibited the lowest gene expression profile. Interestingly, functional analysis tied TTR to amyloid fiber formation and neutrophil degranulation through enrichment analysis. These findings suggested the potential of TTR as a diagnostic biomarker for AD. Additionally, druggability analysis revealed that the FDA-approved drug Levothyroxine might be effective against the Transthyretin protein encoded by the TTR gene. Molecular docking and dynamics simulation studies of Levothyroxine and Transthyretin suggested that this drug could be repurposed to treat AD. However, additional studies using in vitro and in vivo models are necessary before these findings can be applied in clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OJL发布了新的文献求助10
刚刚
1秒前
华仔应助00采纳,获得10
2秒前
3秒前
善学以致用应助澄cc采纳,获得10
4秒前
YJL发布了新的文献求助30
4秒前
窦房结完成签到 ,获得积分10
5秒前
7秒前
ajiwjn完成签到,获得积分10
7秒前
追寻地坛发布了新的文献求助10
8秒前
8秒前
12秒前
科研通AI5应助追寻地坛采纳,获得10
12秒前
YJL完成签到,获得积分10
13秒前
15秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
Opse完成签到,获得积分0
19秒前
并肩于雪山之巅完成签到 ,获得积分10
19秒前
callmefather发布了新的文献求助10
20秒前
噗噗发布了新的文献求助10
21秒前
gh完成签到,获得积分10
21秒前
子弹K发布了新的文献求助10
21秒前
22秒前
传奇3应助大白小杨采纳,获得10
22秒前
是我呀小夏完成签到 ,获得积分10
22秒前
23秒前
23秒前
wen发布了新的文献求助10
24秒前
zzz完成签到,获得积分10
24秒前
澄cc发布了新的文献求助10
25秒前
科研通AI5应助俏皮芷蕊采纳,获得10
25秒前
26秒前
26秒前
Hello应助callmefather采纳,获得10
26秒前
26秒前
放鹿完成签到,获得积分20
27秒前
丘比特应助Clarity采纳,获得10
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867343
求助须知:如何正确求助?哪些是违规求助? 3409640
关于积分的说明 10664507
捐赠科研通 3133927
什么是DOI,文献DOI怎么找? 1728591
邀请新用户注册赠送积分活动 833038
科研通“疑难数据库(出版商)”最低求助积分说明 780517