A Predictive Maintenance Strategy for Multi-Component Systems Based on Components’ Remaining Useful Life Prediction

预测性维护 停工期 组分(热力学) 可靠性工程 维护措施 计算机科学 可靠性(半导体) 状态维修 地铁列车时刻表 预言 预测建模 预防性维护 工程类 机器学习 功率(物理) 物理 量子力学 热力学 操作系统
作者
Yaqiong Lv,Pan Zheng,Jiabei Yuan,Xiaohua Cao
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (18): 3884-3884 被引量:11
标识
DOI:10.3390/math11183884
摘要

Industries increasingly rely on intricate multi-component systems, necessitating efficient maintenance strategies to ensure system reliability and minimize downtime. Predictive maintenance, an emerging approach that utilizes data-driven techniques to forecast and prevent failures, holds significant potential in this regard. This paper presents a predictive maintenance strategy tailored specifically for multi-component systems. In order to accurately anticipate the remaining useful life (RUL) of components, we develop a method that combines data and model fusion based on a particle filtering approach and a degradation distribution model. By integrating degradation data with models, our method outperforms traditional model-based approaches in terms of prediction accuracy. Subsequently, we apply an optimized maintenance model to individual components based on the trigger threshold for RUL. This model determines the most optimal maintenance actions for each component, with the aim of minimizing maintenance costs. Furthermore, we introduce an optimized maintenance strategy that incorporates opportunistic maintenance to further reduce the overall maintenance cost of the system. This strategy leverages predicted RUL information to schedule proactive maintenance actions at the opportune moment, resulting in a significant cost reduction compared to traditional periodic maintenance approaches. To validate the feasibility and effectiveness of our proposed strategy, we utilize experimental data from open-source lithium-ion batteries at the NASA PCoE Center. Through this empirical validation, we provide real-world evidence showcasing the applicability and performance of our strategy in a multi-component system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助激动的一手采纳,获得10
刚刚
辣子鸡发布了新的文献求助10
1秒前
1秒前
yaorongxia发布了新的文献求助10
2秒前
2秒前
jiangjiang完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
汉堡包应助文献狗采纳,获得10
4秒前
5秒前
5秒前
liuHX完成签到,获得积分10
6秒前
浮游应助旺仔采纳,获得10
7秒前
星辰大海应助敏感的语海采纳,获得10
7秒前
XYF完成签到,获得积分10
8秒前
pophoo完成签到,获得积分10
9秒前
NexusExplorer应助Roy采纳,获得10
9秒前
9秒前
情怀应助鲫鱼丸丸饼采纳,获得10
10秒前
10秒前
辣子鸡完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助50
11秒前
清脆惜寒应助活力鸡采纳,获得10
12秒前
12秒前
惠绝山完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助80
13秒前
XYF发布了新的文献求助10
14秒前
14秒前
hibeauty完成签到,获得积分20
15秒前
16秒前
安详的翩跹完成签到,获得积分20
16秒前
16秒前
linkman发布了新的文献求助10
17秒前
17秒前
bkagyin应助提灯采纳,获得10
18秒前
谷捣猫宁发布了新的文献求助10
18秒前
留白完成签到 ,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
张欣宇发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4663599
求助须知:如何正确求助?哪些是违规求助? 4045354
关于积分的说明 12513225
捐赠科研通 3737865
什么是DOI,文献DOI怎么找? 2064124
邀请新用户注册赠送积分活动 1093738
科研通“疑难数据库(出版商)”最低求助积分说明 974341