全色胶片
水准点(测量)
分割
土地覆盖
人工智能
计算机科学
深度学习
航空影像
航空影像
地形
地图学
土地利用
图像分割
模式识别(心理学)
地理
图像(数学)
土木工程
工程类
作者
Elif Sertel,Cengiz Avci,M. Erdem Kabadayı
标识
DOI:10.1109/igarss52108.2023.10281819
摘要
This study aims to generate a new benchmark dataset from historical panchromatic aerial photographs suitable for deep learning-based Land use/Land cover (LULC) segmentation task. This new benchmark dataset spans a wide geographic area and consists of aerial photographs from various populous areas in Turkey and Bulgaria from the 1950s, 1960s, and 1970s. We implemented U-Net++ and Deeplabv3 segmentation architectures and appropriate hyperparameters and backbone structures to determine the applicability of this dataset, specifically for accurate and fast mapping of past terrain conditions. This unique historical LULC dataset and the different combinations of deep learning experiments proposed can be applied to different geographical regions with similar panchromatic datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI