Prediction of compressive strength of brick columns confined with FRP, FRCM, and SRG system using GEP and ANN methods

均方误差 抗压强度 相关系数 基因表达程序设计 决定系数 人工神经网络 纤维增强塑料 砖石建筑 统计 数学 结构工程 计算机科学 材料科学 工程类 人工智能 复合材料
作者
Habib Allah Poornamazian,Mohsen Izadinia
出处
期刊:Maǧallaẗ al-abḥāṯ al-handasiyyaẗ [Journal of Engineering Research]
卷期号:12 (1): 42-55 被引量:9
标识
DOI:10.1016/j.jer.2023.09.029
摘要

This study assesses the strength capacity of brick columns under various confinement materials, including fiber-reinforced polymer (FRP), fiber-reinforced cementitious matrix (FRCM), and steel-reinforced grout (SRG) using gene expression programming (GEP) and artificial neural networks (ANN) models. To achieve this, a comprehensive database of masonry column test results from existing scientific literature is compiled. The models' performance is evaluated using statistical errors like the coefficient of linear correlation (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). Additionally, sensitivity analysis is carried out to assess the significance of individual parameters in the models. The findings reveal that ANN predictions closely match empirical data, demonstrating a strong correlation coefficient of 0.95. The accuracy of the ANN approach is reasonably high, with only 26% of the predicted values deviating by more than 20% from the actual data. Based on the statistical analyses, the correlation coefficient between the actual and estimated data was 0.88, for GEP method. Also, the GEP model yields outcomes, with roughly 43% of the predicted values differing by 20-50% from the actual data. In a comparison of the two models, the ANN model outperforms the GEP model, displaying a 40% reduction in error when estimating the compressive strength of masonry columns. The data estimated by the GEP were sparser than those estimated by the ANN. Nevertheless, the GEP model still maintains an acceptable correlation coefficient and error rate, making it a viable choice for precise predictions. It offers a user-friendly formula and meets the needs of both customers and builders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉诗蕊举报qintiantian求助涉嫌违规
1秒前
英俊书雪完成签到,获得积分20
1秒前
深情安青应助di采纳,获得30
2秒前
3秒前
平常电源发布了新的文献求助10
4秒前
慕青应助lxyx采纳,获得10
4秒前
4秒前
长情胡萝卜完成签到,获得积分10
4秒前
4秒前
云隐完成签到,获得积分10
5秒前
7秒前
7秒前
斯文败类应助体贴凌柏采纳,获得10
8秒前
霸道恒天发布了新的文献求助10
8秒前
情怀应助高贵一德采纳,获得10
8秒前
稶望发布了新的文献求助10
9秒前
9秒前
9秒前
najeeb发布了新的文献求助10
10秒前
10秒前
钴酸锂完成签到,获得积分10
10秒前
次次实验次次成完成签到,获得积分10
10秒前
11秒前
Rita发布了新的文献求助10
13秒前
大个应助称心小白菜采纳,获得10
13秒前
苗苗完成签到,获得积分20
13秒前
14秒前
longchb发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
15秒前
bluesky完成签到,获得积分10
15秒前
bkagyin应助平常电源采纳,获得10
16秒前
文艺安青完成签到 ,获得积分10
16秒前
科研通AI6应助土豆蔡蔡采纳,获得10
17秒前
彭于晏应助yoarfol采纳,获得10
18秒前
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336