MiCE: An ANN-to-SNN Conversion Technique to Enable High Accuracy and Low Latency

尖峰神经网络 计算机科学 神经形态工程学 量化(信号处理) 延迟(音频) 人工神经网络 人工智能 剪裁(形态学) 计算 高效能源利用 模式识别(心理学) 算法 工程类 哲学 电气工程 电信 语言学
作者
Nguyen-Dong Ho,Ik‐Joon Chang
出处
期刊:IEEE Journal on Emerging and Selected Topics in Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1094-1105 被引量:3
标识
DOI:10.1109/jetcas.2023.3328863
摘要

Spiking Neural Networks (SNNs) mimic the behavior of biological neurons. Unlike traditional Artificial Neural Networks (ANNs) that operate in a continuous time domain and use activation functions to process information, SNNs operate discrete event-driven, where data is encoded and communicated through spikes or discrete events. This unique approach offers several advantages, such as efficient computation and lower power consumption, making SNNs particularly attractive for energy-constrained and neuromorphic applications. However, training SNNs poses significant challenges due to the discrete nature of spikes and the non-differentiable behavior they exhibit. As a result, converting pre-trained ANNs into SNNs has gained attention as a convenient approach. While this approach simplifies the training process, it introduces certain drawbacks, including high latency. The conversion of ANNs to SNNs typically leads to a loss of accuracy, which can be attributed to various factors, including quantization, clipping, and timing errors. Previous studies have proposed techniques to mitigate quantization and clipping errors during the conversion process. However, they do not consider timing errors, degrading SNN accuracies at low latency conditions. This work introduces the MiCE conversion method, which offers a comprehensive joint optimization strategy to simultaneously alleviate quantization, clipping, and timing errors. At a moderate latency of 8 time-steps, our converted ResNet-20 achieves classification accuracies of 79.02% and 95.74% on the CIFAR-100 and CIFAR-10 datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kkkkk发布了新的文献求助10
1秒前
2秒前
含糊丸子完成签到,获得积分10
2秒前
小嘿在努力完成签到 ,获得积分10
4秒前
直率媚颜完成签到,获得积分10
4秒前
CodeCraft应助luonayi采纳,获得10
4秒前
5秒前
哇哇哇哇发布了新的文献求助10
6秒前
6秒前
勤奋胡萝卜完成签到 ,获得积分10
6秒前
平常的高跟鞋完成签到 ,获得积分10
7秒前
8秒前
All发布了新的文献求助10
8秒前
peterxia发布了新的文献求助10
9秒前
Gracie发布了新的文献求助10
10秒前
ferritin发布了新的文献求助10
11秒前
自建发布了新的文献求助10
11秒前
刻苦觅荷发布了新的文献求助10
11秒前
一天完成签到,获得积分10
11秒前
隐形曼青应助奋斗的依秋采纳,获得10
11秒前
Amy完成签到,获得积分20
12秒前
13秒前
peterxia完成签到,获得积分10
14秒前
foreverchoi发布了新的文献求助10
14秒前
17秒前
17秒前
华仔应助罗wq采纳,获得10
20秒前
FashionBoy应助NotStyx采纳,获得10
20秒前
shirley发布了新的文献求助10
21秒前
Luuu发布了新的文献求助10
21秒前
fanmo发布了新的文献求助20
22秒前
22秒前
虚幻采枫发布了新的文献求助10
23秒前
隐形曼青应助foreverchoi采纳,获得10
23秒前
深情安青应助QYPANG采纳,获得10
23秒前
酷波er应助哇哇哇哇采纳,获得10
24秒前
24秒前
归尘发布了新的文献求助10
24秒前
甜蜜暴徒发布了新的文献求助10
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930603
求助须知:如何正确求助?哪些是违规求助? 3475468
关于积分的说明 10987217
捐赠科研通 3205561
什么是DOI,文献DOI怎么找? 1771563
邀请新用户注册赠送积分活动 859101
科研通“疑难数据库(出版商)”最低求助积分说明 796930