Rapid prediction of airborne gaseous pollutant transport in aircraft cabins based on proper orthogonal decomposition and the Markov chain method

气流 计算流体力学 污染物 马尔可夫链 环境科学 计算机科学 模拟 工程类 气象学 机械工程 航空航天工程 机器学习 化学 物理 有机化学
作者
Yi‐Jun Wei,Tengfei Zhang,Huibin Jin
出处
期刊:Building and Environment [Elsevier BV]
卷期号:228: 109816-109816 被引量:9
标识
DOI:10.1016/j.buildenv.2022.109816
摘要

Rapid prediction of airborne gaseous pollutant transport is important for designing a safe indoor environment. Current models generally solve the airflow fields by CFD first and then predict the transport of a pollutant in fixed airflow patterns. Every time the air-supply parameters are adjusted, the airflow field must be re-solved by CFD, which is time-consuming. This study proposed a model to improve the prediction efficiency. The model first applies proper orthogonal decomposition to the sampled airflow fields, to construct a database related to all the airflow fields in the sample ranges, and then uses the Markov chain method to obtain the airflow field with the desired air-supply parameters for construction of a transport probability matrix. Finally, the airborne gaseous pollutant transport can be predicted quickly in the fixed airflow pattern. The proposed model was applied to an aircraft cabin model, first with a single gaseous pollutant source and then with two sources, for validation of the proposed model. The results show that the proposed model can predict both the airflow field and the transport of a gaseous pollutant with outcomes similar to those obtained by the conventional CFD method, but with a much shorter computing time. When the database has been prepared in advance, the use of the model reduces the computing time by more than 90%. Further improvement of the proposed model in terms of accuracy and extension of the model to prediction of pollutant transport within unsteady airflow fields will be the main objectives of future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
虚心谷梦发布了新的文献求助10
3秒前
CodeCraft应助Loooong采纳,获得10
3秒前
6秒前
7秒前
10秒前
wanci应助lelsey采纳,获得10
10秒前
11秒前
12秒前
13秒前
zila完成签到,获得积分10
13秒前
大力荷花完成签到,获得积分10
13秒前
14秒前
此话当真发布了新的文献求助10
15秒前
唯心止论发布了新的文献求助10
16秒前
xibaluma发布了新的文献求助10
18秒前
刘文思发布了新的文献求助10
18秒前
美好的从阳完成签到,获得积分20
19秒前
科研奇男子完成签到,获得积分10
20秒前
22秒前
他和她的猫完成签到,获得积分10
23秒前
隐形曼青应助贪玩的听荷采纳,获得10
23秒前
彭于晏应助拔刀斩落樱采纳,获得10
24秒前
joy完成签到 ,获得积分10
24秒前
25秒前
brainxue完成签到,获得积分10
27秒前
斯文败类应助大理学子采纳,获得10
27秒前
27秒前
niii发布了新的文献求助10
30秒前
晨风韵雨发布了新的文献求助10
31秒前
joy发布了新的文献求助10
31秒前
冰糕发布了新的文献求助20
31秒前
relink完成签到,获得积分10
32秒前
此话当真完成签到,获得积分10
32秒前
赘婿应助听风轻语采纳,获得10
32秒前
思源应助niii采纳,获得10
35秒前
小糊涂仙完成签到,获得积分10
36秒前
linci完成签到,获得积分10
36秒前
舒岑皓完成签到,获得积分20
36秒前
seven完成签到,获得积分10
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785864
求助须知:如何正确求助?哪些是违规求助? 3331212
关于积分的说明 10250565
捐赠科研通 3046660
什么是DOI,文献DOI怎么找? 1672149
邀请新用户注册赠送积分活动 801039
科研通“疑难数据库(出版商)”最低求助积分说明 759979