亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Coronary heart disease classification using deep learning approach with feature selection for improved accuracy

计算机科学 特征选择 人工智能 深度学习 选择(遗传算法) 模式识别(心理学) 机器学习 特征(语言学) 疾病 医学 内科学 语言学 哲学
作者
Anandhavalli Muniasamy,A. Sumaiya Begum,Asfia Sabahath,Humara Yaqub,Gauthaman Karunakaran
出处
期刊:Technology and Health Care [IOS Press]
卷期号:32 (3): 1991-2007 被引量:2
标识
DOI:10.3233/thc-231807
摘要

BACKGROUND: Coronary heart disease (CHD) is one of the deadliest diseases and a risk prediction model for cardiovascular conditions is needed. Due to the huge number of features that lead to heart problems, it is often difficult for an expert to evaluate these huge features into account. So, there is a need of appropriate feature selection for the given CHD dataset. For early CHD detection, deep learning modes (DL) show promising results in the existing studies. OBJECTIVE: This study aimed to develop a deep convolution neural network (CNN) model for classification with a selected number of efficient features using the LASSO (least absolute shrinkage and selection operator) technique. Also, aims to compare the model with similar studies and analyze the performance of the proposed model using accuracy measures. METHODS: The CHD dataset of NHANES (National Health and Nutritional Examination Survey) was examined with 49 features using LASSO technique. This research work is an attempt to apply an improved CNN model for the classification of the CHD dataset with huge features CNN model with feature extractor consists of a fully connected layer with two convolution 1D layers, and classifier part consists of two fully connected layers with SoftMax function was trained on this dataset. Metrics like accuracy recall, specificity, and ROC were used for the evaluation of the proposed model. RESULTS: The feature selection was performed by applying the LASSO model. The proposed CNN model achieved 99.36% accuracy, while previous studies model achieved over 80 to 92% accuracy. CONCLUSION: The application of the proposed CNN with the LASSO model for the classification of CHD can speed up the diagnosis of CHD and appears to be effective in predicting cardiovascular disease based on risk features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助eve采纳,获得10
刚刚
xj0806完成签到 ,获得积分10
5秒前
火火完成签到 ,获得积分10
8秒前
大方的新筠完成签到,获得积分10
9秒前
9秒前
10秒前
zho关闭了zho文献求助
13秒前
eve发布了新的文献求助10
14秒前
ZJ完成签到,获得积分10
17秒前
24秒前
28秒前
31秒前
huoxing发布了新的文献求助10
32秒前
自由青枫完成签到,获得积分20
34秒前
自由青枫发布了新的文献求助10
36秒前
41秒前
41秒前
41秒前
42秒前
Cold应助自由青枫采纳,获得10
44秒前
automan完成签到,获得积分10
44秒前
山东老铁完成签到,获得积分10
46秒前
NOTHING完成签到 ,获得积分10
47秒前
zho发布了新的文献求助10
54秒前
Ya完成签到 ,获得积分10
55秒前
58秒前
even完成签到 ,获得积分10
59秒前
月小仙发布了新的文献求助10
1分钟前
1分钟前
oni发布了新的文献求助10
1分钟前
科研通AI2S应助VDC采纳,获得10
1分钟前
wefor完成签到 ,获得积分10
1分钟前
Panther完成签到,获得积分10
1分钟前
DrSong完成签到,获得积分10
1分钟前
极大张希希完成签到 ,获得积分10
1分钟前
DD立芬完成签到 ,获得积分10
1分钟前
李在猛完成签到 ,获得积分10
1分钟前
2分钟前
不懂白完成签到 ,获得积分10
2分钟前
咕咚发布了新的文献求助10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777565
求助须知:如何正确求助?哪些是违规求助? 3322938
关于积分的说明 10212565
捐赠科研通 3038270
什么是DOI,文献DOI怎么找? 1667263
邀请新用户注册赠送积分活动 798073
科研通“疑难数据库(出版商)”最低求助积分说明 758201