CutPaste-ROI: An Industrial Anomaly Data Detection Method based on Self-supervised Learning

异常检测 异常(物理) 计算机科学 人工智能 模式识别(心理学) 物理 凝聚态物理
作者
Le Yang,Wenhan Yang,Zhengsong Wang
出处
期刊:Journal of Imaging Science and Technology [Society for Imaging Science and Technology]
卷期号:68 (2): 1-12
标识
DOI:10.2352/j.imagingsci.technol.2024.68.2.020412
摘要

This paper presents a method called CPR (CutPaste-ROI) to enhance the accuracy of detecting anomalies in industrial settings. The method addresses the issue of sample scarcity in detecting defects. CPR is based on the CutPaste data augmentation method, but introduces the concept of region of intrerst (ROI) and uses the Otsu's adaptive threshold segmentation method to identify the target region of the image. This ensures that the generated defects are placed in the foreground target region, avoiding the negative impact of "polluted data" on the performance of neural network models. Additionally, the Poisson image fusion algorithm is used to improve the realism and naturalness of simulated defect samples. The self-attention mechanism is introduced to enhance the sensitivity of neural networks to the key features of data. Experiments were conducted on an industrial anomaly detection dataset to validate the effectiveness of the CPR method. The results indicate that CPR can significantly improve the accuracy and robustness of industrial anomaly detection. Compared with other data augmentation methods, CPR generates more realistic and diverse defect samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾国强完成签到,获得积分10
3秒前
在水一方应助谦让的紫蓝采纳,获得10
3秒前
天天快乐应助怕黑的画板采纳,获得10
4秒前
狮子座发布了新的文献求助10
4秒前
6秒前
meihui完成签到 ,获得积分10
9秒前
FashionBoy应助歇儿哒哒采纳,获得10
9秒前
lhy完成签到,获得积分10
10秒前
DC发布了新的文献求助10
10秒前
PureKK完成签到,获得积分10
11秒前
zzzz完成签到 ,获得积分10
13秒前
CipherSage应助默默若枫采纳,获得10
13秒前
Jiaxin_Wu完成签到 ,获得积分10
14秒前
狮子座发布了新的文献求助10
15秒前
17秒前
orixero应助Freda采纳,获得10
17秒前
Ava应助无机盐采纳,获得200
18秒前
18秒前
18秒前
19秒前
机灵笑萍完成签到,获得积分10
19秒前
20秒前
安安滴滴发布了新的文献求助10
20秒前
宅了五百奶奶完成签到,获得积分10
20秒前
xlh完成签到 ,获得积分10
23秒前
23秒前
刘唐荣发布了新的文献求助10
26秒前
28秒前
科研通AI5应助畅快的蛋挞采纳,获得30
30秒前
谦让的紫蓝完成签到,获得积分10
30秒前
FashionBoy应助Captain采纳,获得10
32秒前
veveve发布了新的文献求助10
33秒前
33秒前
five43完成签到,获得积分10
35秒前
aa完成签到,获得积分20
37秒前
39秒前
41秒前
41秒前
小宋应助刘唐荣采纳,获得10
41秒前
41秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831605
求助须知:如何正确求助?哪些是违规求助? 3373811
关于积分的说明 10481474
捐赠科研通 3093752
什么是DOI,文献DOI怎么找? 1702983
邀请新用户注册赠送积分活动 819267
科研通“疑难数据库(出版商)”最低求助积分说明 771328