RAPHIA: A deep learning pipeline for the registration of MRI and whole-mount histopathology images of the prostate

安装 组织病理学 管道(软件) 人工智能 前列腺 计算机科学 深度学习 磁共振成像 医学 放射科 病理 内科学 操作系统 癌症 程序设计语言
作者
Wei Shao,Sulaiman Vesal,Simon John Christoph Soerensen,Indrani Bhattacharya,Negar Golestani,Rikiya Yamashita,Christian A. Kunder,Richard E. Fan,Pejman Ghanouni,James D. Brooks,Geoffrey A. Sonn,Mirabela Rusu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108318-108318 被引量:7
标识
DOI:10.1016/j.compbiomed.2024.108318
摘要

Image registration can map the ground truth extent of prostate cancer from histopathology images onto MRI, facilitating the development of machine learning methods for early prostate cancer detection. Here, we present RAdiology PatHology Image Alignment (RAPHIA), an end-to-end pipeline for efficient and accurate registration of MRI and histopathology images. RAPHIA automates several time-consuming manual steps in existing approaches including prostate segmentation, estimation of the rotation angle and horizontal flipping in histopathology images, and estimation of MRI-histopathology slice correspondences. By utilizing deep learning registration networks, RAPHIA substantially reduces computational time. Furthermore, RAPHIA obviates the need for a multimodal image similarity metric by transferring histopathology image representations to MRI image representations and vice versa. With the assistance of RAPHIA, novice users achieved expert-level performance, and their mean error in estimating histopathology rotation angle was reduced by 51% (12 degrees vs 8 degrees), their mean accuracy of estimating histopathology flipping was increased by 5% (95.3% vs 100%), and their mean error in estimating MRI-histopathology slice correspondences was reduced by 45% (1.12 slices vs 0.62 slices). When compared to a recent conventional registration approach and a deep learning registration approach, RAPHIA achieved better mapping of histopathology cancer labels, with an improved mean Dice coefficient of cancer regions outlined on MRI and the deformed histopathology (0.44 vs 0.48 vs 0.50), and a reduced mean per-case processing time (51 vs 11 vs 4.5 min). The improved performance by RAPHIA allows efficient processing of large datasets for the development of machine-learning models for prostate cancer detection on MRI. Our code is publicly available at: https://github.com/pimed/RAPHIA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCC发布了新的文献求助10
刚刚
whatever举报Jeri求助涉嫌违规
刚刚
我是老大应助dugege采纳,获得10
刚刚
1秒前
天天快乐应助SYSUer采纳,获得10
2秒前
陌上花开完成签到,获得积分0
2秒前
水长东完成签到,获得积分10
2秒前
师霸完成签到,获得积分10
2秒前
2秒前
yuan发布了新的文献求助10
2秒前
大个应助勺子采纳,获得10
2秒前
冷静尔云发布了新的文献求助10
2秒前
2秒前
3秒前
旺仔Mario完成签到,获得积分10
3秒前
小西几发布了新的文献求助10
4秒前
4秒前
5秒前
嗷嗷发布了新的文献求助10
6秒前
6秒前
草莓完成签到,获得积分10
6秒前
6秒前
亚黑发布了新的文献求助10
6秒前
春风十里发布了新的文献求助10
6秒前
小遇发布了新的文献求助10
6秒前
zzz完成签到,获得积分10
6秒前
顾矜应助迷路广缘采纳,获得10
6秒前
慕青应助叶颤采纳,获得10
7秒前
shipeiling完成签到 ,获得积分10
7秒前
7秒前
7秒前
科研通AI6应助健壮凡桃采纳,获得10
7秒前
hejing发布了新的文献求助10
8秒前
草莓发布了新的文献求助10
9秒前
9秒前
FashionBoy应助皇甫妙竹采纳,获得10
9秒前
10秒前
科研通AI5应助hhh采纳,获得10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4825811
求助须知:如何正确求助?哪些是违规求助? 4132410
关于积分的说明 12788887
捐赠科研通 3873781
什么是DOI,文献DOI怎么找? 2130984
邀请新用户注册赠送积分活动 1151483
关于科研通互助平台的介绍 1049048