Constructing CoNi-LDH/Fe MOF/NF Heterostructure Catalyst for Energy-Efficient OER and UOR at High Current Density

材料科学 析氧 分解水 过电位 催化作用 电解 异质结 阳极 制氢 无机化学 电解水 光电子学 化学工程 电极 电解质 电化学 物理化学 生物化学 化学 工程类 光催化
作者
Qing-Nan Bian,Ben-Shuai Guo,Dongxing Tan,Dan Zhang,Weiqing Kong,Chong‐Bin Wang,Yuanyuan Feng
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (12): 14742-14749 被引量:34
标识
DOI:10.1021/acsami.3c17627
摘要

The sluggish kinetics of the oxygen evolution reaction (OER) always results in a high overpotential at the anode of water electrolysis and an excessive electric energy consumption, which has been a major obstacle for hydrogen production through water electrolysis. In this study, we present a CoNi-LDH/Fe MOF/NF heterostructure catalyst with nanoneedle array morphology for the OER. In 1.0 M KOH solution, the heterostructure catalyst only required overpotentials of 275 and 305 mV to achieve high current densities of 500 and 1000 mA/cm2 for OER, respectively. The catalytic activities are much higher than those of the reference single-component CoNi-LDH/NF and Fe MOF/NF catalysts. The improved catalytic performance of the heterostructure catalyst can be ascribed to the synergistic effect of CoNi-LDH and Fe MOF. In particular, when the anodic OER is replaced with the urea oxidation reaction (UOR), which has a relatively lower thermodynamic equilibrium potential and is expected to reduce the cell voltage, the overpotentials required to achieve the same current densities can be reduced by 80 and 40 mV, respectively. The cell voltage required to drive overall urea splitting (OUS) is only 1.55 V at 100 mA/cm2 in the Pt/C/NF||CoNi-LDH/Fe MOF/NF two-electrode electrolytic cell. This value is 60 mV lower compared with that required for overall water splitting (OWS). Our results indicate that a reasonable construction of a heterostructure catalyst can significantly give rise to higher electrocatalytic performance, and using UOR to replace the anodic OER of the OWS can greatly reduce the electrolytic energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gakay发布了新的文献求助10
刚刚
hkh发布了新的文献求助10
1秒前
傣妹纸如裴洱完成签到,获得积分10
1秒前
ccq发布了新的文献求助10
1秒前
fosca完成签到,获得积分10
5秒前
7秒前
keleboys完成签到 ,获得积分10
8秒前
研友_ngqjz8完成签到,获得积分10
9秒前
CC完成签到,获得积分10
11秒前
小张同学完成签到,获得积分10
12秒前
bc应助yyou采纳,获得10
13秒前
CC发布了新的文献求助10
13秒前
谢富杰发布了新的文献求助10
17秒前
阳光的成风完成签到,获得积分10
17秒前
19秒前
橙汁得配曼妥思完成签到 ,获得积分10
21秒前
22秒前
晶晶发布了新的文献求助10
22秒前
lijunlhc完成签到,获得积分10
24秒前
shi发布了新的文献求助10
25秒前
huhao完成签到,获得积分20
26秒前
31秒前
华仔应助huhao采纳,获得20
31秒前
34秒前
39秒前
39秒前
科研通AI5应助科研通管家采纳,获得30
39秒前
段段砖应助科研通管家采纳,获得10
39秒前
完美世界应助科研通管家采纳,获得10
39秒前
40秒前
我是老大应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
香蕉觅云应助科研通管家采纳,获得10
40秒前
天天快乐应助科研通管家采纳,获得10
40秒前
脑洞疼应助科研通管家采纳,获得10
40秒前
深情安青应助科研通管家采纳,获得10
40秒前
小马甲应助科研通管家采纳,获得10
40秒前
英姑应助科研通管家采纳,获得10
40秒前
天天快乐应助科研通管家采纳,获得10
40秒前
科研通AI5应助科研通管家采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777790
求助须知:如何正确求助?哪些是违规求助? 3323297
关于积分的说明 10213693
捐赠科研通 3038552
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275