亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Soil Salinity Estimation based on Sentinel-1/2 Texture Features and Machine Learning

纹理(宇宙学) 土壤质地 盐度 计算机科学 人工智能 估计 遥感 环境科学 机器学习 地质学 模式识别(心理学) 土壤科学 土壤水分 工程类 图像(数学) 海洋学 系统工程
作者
Yujie He,Haoyuan Yin,Yinwen Chen,Ru Xiang,Zhitao Zhang,Haiying Chen
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (9): 15302-15310
标识
DOI:10.1109/jsen.2024.3377682
摘要

Soil salinization is a vital factor in global land degradation, seriously affecting sustainable agricultural development. Efficient monitoring of soil salinity using satellite remote sensing is critical for saline soil management. Currently, research on soil salinity extraction using satellite remote sensing primarily relies on the spectral information of remote sensing images, but insufficient consideration was given to the texture features of the imagery and the integration of spectral and texture information.To fully explore the effectiveness of texture features and the integration of texture features and spectral information in soil salinity estimation, experiments were conducted in Shahaoqu Irrigation Area, Inner Monglia, China from April through August, 2019. For this end, the experiments utilized measured soil salinity data and the textural and spectral data from Sentinel-1/2. The effectiveness of Sentinel-1/2 texture features in soil salinity estimation was esamined using Out of Bag score, and soil salinity inversion models were constructed based on the texture features, spectral information and 4 machine learning models(Random Forest, Cubist, Support Vector Machines, Back Propagation). The results indicated that Sentinel-1 texture features were more sensible to bare soil salinity (the top four most sensible texture featrues were HOM, ENT, COR, CON) while Sentinel-2 texture features were more sensible to vegetated soil salinity (the top four were VAR, CON, HOM, ENT). Additionally, when combining texture features and spectral information, the models exhibited improved performance, and Random Forest had the best performance in both bare soil (R 2 =0.688, RMSE=0.207) and vegetated soil (R 2 =0.494, RMSE=0.304).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1121完成签到,获得积分10
10秒前
Akim应助含蓄的荔枝采纳,获得10
13秒前
16秒前
34秒前
37秒前
37秒前
37秒前
37秒前
39秒前
39秒前
39秒前
40秒前
41秒前
41秒前
41秒前
41秒前
43秒前
43秒前
43秒前
43秒前
43秒前
43秒前
科目三应助duoduoqian采纳,获得10
45秒前
CipherSage应助Ansong采纳,获得10
45秒前
55秒前
duoduoqian发布了新的文献求助10
1分钟前
Ansong发布了新的文献求助20
1分钟前
维生素完成签到,获得积分10
1分钟前
Akim应助asdf采纳,获得10
1分钟前
1分钟前
1分钟前
Ansong发布了新的文献求助10
1分钟前
1分钟前
小小明发布了新的文献求助10
1分钟前
asdf发布了新的文献求助10
1分钟前
小小明完成签到,获得积分10
1分钟前
2分钟前
上官若男应助知足采纳,获得10
2分钟前
CodeCraft应助崔洪瑞采纳,获得20
2分钟前
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815770
求助须知:如何正确求助?哪些是违规求助? 3359317
关于积分的说明 10402144
捐赠科研通 3077173
什么是DOI,文献DOI怎么找? 1690198
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713