Federated deep reinforcement learning for dynamic job scheduling in cloud-edge collaborative manufacturing systems

强化学习 云计算 调度(生产过程) GSM演进的增强数据速率 计算机科学 云制造 钢筋 分布式计算 工业工程 运筹学 制造工程 人工智能 工程类 运营管理 结构工程 操作系统
作者
Xiaohan Wang,Zhang Li,Lihui Wang,Xi Vincent Wang,Yongkui Liu
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:62 (21): 7743-7762 被引量:2
标识
DOI:10.1080/00207543.2024.2328116
摘要

The cloud-edge collaborative manufacturing system (CCMS) connects distributed factories to a cloud centre through cloud-edge collaborative communication, introducing both opportunities and challenges to conventional dynamic job scheduling. Enhancing each factory's scheduling performance by sharing general scheduling knowledge among heterogeneous factories under the consideration of data privacy protection remains challenging. To this end, this paper proposes to solve the dynamic job scheduling in the context of CCMS with a novel federated deep reinforcement learning (FDRL) approach. Within each factory, the scheduling objective involves minimising the makespan and energy consumption, accounting for machine warm-up procedures and real-time dynamics. To handle heterogeneous policy structures, we aggregate their hidden parameters through FDRL, with states, actions, and rewards designed to facilitate the aggregation. The two-phase algorithm, comprising iterative local training and global aggregation, trains the scheduling policies. Constraint items are introduced to the loss functions to smooth local training, and the global aggregation considers production scales and obtained objectives. The proposed approach enhances the solution quality and generalisation of each factory's scheduling policy without exposing original production data. Numerical experiments conducted on sixty scheduling instances validate the superiority of the proposed approach compared to twelve dynamic scheduling methods. Compared to independently trained DRL-based approaches, the proposed FDRL-based approach achieves up to an 8.9% reduction in makespan and a 22.3% decrease in energy consumption through knowledge sharing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助杨杰采纳,获得10
1秒前
3秒前
八段锦发布了新的文献求助10
3秒前
4秒前
llll应助lyx采纳,获得10
4秒前
MooN完成签到,获得积分10
6秒前
传奇3应助刘小小123采纳,获得10
7秒前
8秒前
炙热的无心完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助100
9秒前
9秒前
10秒前
科研通AI6应助hezi采纳,获得10
10秒前
烟花应助hezi采纳,获得10
10秒前
10秒前
10秒前
华仔应助好运接收集成器采纳,获得10
10秒前
路宝淇发布了新的文献求助10
11秒前
11秒前
冷静书白发布了新的文献求助10
12秒前
顺利的琳发布了新的文献求助50
13秒前
一星发布了新的文献求助10
13秒前
小蘑菇应助Cole采纳,获得10
13秒前
badyoungboy发布了新的文献求助10
15秒前
格格巫完成签到 ,获得积分10
15秒前
fff发布了新的文献求助10
16秒前
核桃发布了新的文献求助10
17秒前
无花果应助ouyang采纳,获得10
18秒前
18秒前
19秒前
21秒前
badyoungboy完成签到,获得积分10
21秒前
科研通AI5应助咖喱给给采纳,获得10
22秒前
fff完成签到,获得积分20
22秒前
haha完成签到,获得积分10
22秒前
22秒前
火星上的飞丹完成签到 ,获得积分10
22秒前
zzz完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849974
求助须知:如何正确求助?哪些是违规求助? 4149442
关于积分的说明 12853673
捐赠科研通 3896769
什么是DOI,文献DOI怎么找? 2141868
邀请新用户注册赠送积分活动 1161394
关于科研通互助平台的介绍 1061322