Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning

火炬 医学 恶性肿瘤 腹水 细胞学 胸腔积液 接收机工作特性 放射科 病理 内科学 材料科学 焊接 冶金
作者
Fei Tian,Dong Liu,Na Wei,Qianqian Fu,Lin Sun,Wei Liu,Xiaolong Sui,Kathryn Tian,Genevieve Nemeth,Jingyu Feng,Jingjing Xu,Lin Xiao,Junya Han,Jingjie Fu,Yinhua Shi,Yichen Yang,Jia Liu,Chunhong Hu,Bin Feng,Yan Sun
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:30 (5): 1309-1319 被引量:30
标识
DOI:10.1038/s41591-024-02915-w
摘要

Abstract Cancer of unknown primary (CUP) site poses diagnostic challenges due to its elusive nature. Many cases of CUP manifest as pleural and peritoneal serous effusions. Leveraging cytological images from 57,220 cases at four tertiary hospitals, we developed a deep-learning method for tumor origin differentiation using cytological histology (TORCH) that can identify malignancy and predict tumor origin in both hydrothorax and ascites. We examined its performance on three internal ( n = 12,799) and two external ( n = 14,538) testing sets. In both internal and external testing sets, TORCH achieved area under the receiver operating curve values ranging from 0.953 to 0.991 for cancer diagnosis and 0.953 to 0.979 for tumor origin localization. TORCH accurately predicted primary tumor origins, with a top-1 accuracy of 82.6% and top-3 accuracy of 98.9%. Compared with results derived from pathologists, TORCH showed better prediction efficacy (1.677 versus 1.265, P < 0.001), enhancing junior pathologists’ diagnostic scores significantly (1.326 versus 1.101, P < 0.001). Patients with CUP whose initial treatment protocol was concordant with TORCH-predicted origins had better overall survival than those who were administrated discordant treatment (27 versus 17 months, P = 0.006). Our study underscores the potential of TORCH as a valuable ancillary tool in clinical practice, although further validation in randomized trials is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果映菱发布了新的文献求助10
1秒前
科研通AI5应助zing采纳,获得10
1秒前
彭于晏应助nusiew采纳,获得10
1秒前
2秒前
3秒前
伶俐涵菱完成签到,获得积分10
3秒前
学阀小智发布了新的文献求助10
3秒前
涤尘完成签到,获得积分10
3秒前
熙熙发布了新的文献求助10
4秒前
YYMY2022发布了新的文献求助10
4秒前
风趣的可兰完成签到 ,获得积分10
4秒前
VISIN完成签到 ,获得积分10
4秒前
6秒前
Jimmy发布了新的文献求助10
6秒前
苹果映菱完成签到,获得积分20
6秒前
7秒前
嘻嘻嘻完成签到,获得积分10
7秒前
君君发布了新的文献求助10
8秒前
满意的盼柳完成签到,获得积分10
8秒前
WSY发布了新的文献求助10
8秒前
9秒前
9秒前
苏昊海发布了新的文献求助10
10秒前
传奇3应助超帅的店员采纳,获得10
11秒前
12秒前
Alicia发布了新的文献求助10
12秒前
SASA发布了新的文献求助10
13秒前
嘻嘻嘻发布了新的文献求助10
15秒前
15秒前
sskr完成签到,获得积分10
15秒前
丘比特应助现代雪柳采纳,获得10
16秒前
李爱国应助Duan采纳,获得10
16秒前
小梦完成签到,获得积分10
16秒前
17秒前
17秒前
日尧完成签到,获得积分10
19秒前
78910完成签到,获得积分10
20秒前
20秒前
科目三应助乐观的非笑采纳,获得10
21秒前
法侣完成签到,获得积分10
21秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833048
求助须知:如何正确求助?哪些是违规求助? 3375470
关于积分的说明 10489248
捐赠科研通 3095117
什么是DOI,文献DOI怎么找? 1704226
邀请新用户注册赠送积分活动 819877
科研通“疑难数据库(出版商)”最低求助积分说明 771661