Information fusion-based genetic algorithm with long short-term memory for stock price and trend prediction

计算机科学 期限(时间) 信息融合 股票价格 融合 短时记忆 算法 遗传算法 人工智能 数据挖掘 机器学习 系列(地层学) 人工神经网络 生物 语言学 哲学 物理 量子力学 循环神经网络 古生物学
作者
Ankit Thakkar,Kinjal Chaudhari
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:128: 109428-109428 被引量:28
标识
DOI:10.1016/j.asoc.2022.109428
摘要

Information fusion is one of the critical aspects in diverse fields of applications; while the collected data may provide certain perspectives, a fusion of such data can be a useful way of exploring, expanding, enhancing, and extracting meaningful information for a better organization of the targeted domain. A nature-inspired evolutionary approach, namely, genetic algorithm (GA) is adopted for a variety of applications including stock market prediction. The complex, highly fluctuating financial market-related problems require optimized models for reliable forecasting. Also, it can be observed that stock market etiquettes are generally non-linear in nature and therefore, a broader understanding and analysis of such market behaviors necessitate the collection and fusion of relevant information based on different associated factors. In this article, we propose an information fusion-based GA approach with inter-intra crossover and adaptive mutation (ICAN) for stock price and trend prediction. Inspired by the genetic diversity and survival capability of various organisms, our proposed approach aims to optimize parameters of a long short-term memory prediction model, and selects a set of features; to address these problems of interest, we integrate inter-chromosome as well as conditional intra-chromosome crossover operations along with adaptive mutation to diversify the potential chromosome solutions. We illustrate the step-by-step procedure followed by GA with ICAN and evaluate its performance for one-day-ahead stock price and trend prediction. GA with ICAN-based optimization results in an average reduction of 43%, 27%, and 26% using mean squared error, mean absolute error, and mean absolute percentage error, respectively, as compared to the existing GA-based optimization approaches; further, an average improvement of 61% is encountered using R 2 score. We also compare our work with Ant Lion Optimization approach and demonstrate the significance of GA with ICAN-based optimization. We analyze statistical significance, as well as convergence functions, for GA with ICAN and discuss remarkable performance enhancement; we provide necessary concluding remarks with potential future research directions. • Two parts in each chromosome are proposed to select features and optimize parameters. • Inter-chromosome crossover is individually applied to each part of chromosomes. • Information fusion-based conditional intra-chromosome crossover is performed. • Mutation rate is adaptively updated based on previous and current generation fitness. • Improved stock price trend prediction performance is demonstrated using GA with ICAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助沉着采纳,获得10
刚刚
刚刚
苇一完成签到,获得积分10
刚刚
海城好人完成签到,获得积分10
1秒前
Orange应助ecnu搬砖人采纳,获得10
2秒前
crystal发布了新的文献求助10
3秒前
4秒前
十里桃花不徘徊完成签到,获得积分10
6秒前
123应助Modest采纳,获得30
6秒前
8秒前
能干的丝发布了新的文献求助30
8秒前
30040完成签到,获得积分10
8秒前
crystal完成签到,获得积分10
9秒前
9秒前
思源应助Linuuu采纳,获得10
11秒前
情怀应助玉米豆采纳,获得10
11秒前
11秒前
12秒前
ecnu搬砖人发布了新的文献求助10
13秒前
linjane发布了新的文献求助10
14秒前
16秒前
冯杰完成签到 ,获得积分10
18秒前
一一发布了新的文献求助10
19秒前
Robylee完成签到,获得积分10
20秒前
世界末末日完成签到 ,获得积分10
20秒前
23秒前
24秒前
24秒前
JamesPei应助乐观期待采纳,获得10
25秒前
25秒前
hd完成签到,获得积分10
25秒前
所所应助冬瓜炖排骨采纳,获得10
28秒前
29秒前
星辰大海应助honghong采纳,获得30
29秒前
Rain发布了新的文献求助10
31秒前
34秒前
Ava应助kk采纳,获得50
35秒前
coolru发布了新的文献求助10
37秒前
能干的丝完成签到,获得积分10
39秒前
二妹儿完成签到,获得积分20
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796439
求助须知:如何正确求助?哪些是违规求助? 3341632
关于积分的说明 10306955
捐赠科研通 3058218
什么是DOI,文献DOI怎么找? 1678070
邀请新用户注册赠送积分活动 805794
科研通“疑难数据库(出版商)”最低求助积分说明 762815