Highly reductive photocatalytic systems in organic synthesis

惰性 光催化 背景(考古学) 光催化 还原消去 电子转移 电解 氧化还原 纳米技术 有机合成 化学 光化学 组合化学 材料科学 催化作用 有机化学 物理化学 古生物学 电极 电解质 生物
作者
Li‐Li Liao,Lei Song,Si‐Shun Yan,Jian‐Heng Ye,Da‐Gang Yu
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:4 (6): 512-527 被引量:47
标识
DOI:10.1016/j.trechm.2022.03.008
摘要

The recent development of highly reductive photocatalytic systems for the reduction of challenging substrates (substrates with very negative reduction potentials) with super electron donors for C–C and C–X (X = H, B, P, S, Sn) bond formations via single- or multiphoton excitation is highlighted. Several elegant strategies, including consecutive photo-induced electron transfer (conPET), electrochemically mediated photoredox catalysis (e-PRC), or tandem photoredox strategy, play a significant role in highly reductive photocatalytic systems. These highly reductive photocatalytic systems provide a new strategy for the reduction of inert substrates under mild conditions with adjustable photosensitizers, showing an advantage to the direct UVC photolysis, electrolysis, and classical transition-metal catalysis via two-electron activation. Reductive organic transformations, which are important in both academia and industry to generate valuable chemicals, have been widely investigated. However, the reductive transformations of inert substrates still face many challenges, such as high cost and potential safety issues arising from strong reductants in excess, UVC light irradiation, or strong current density for electrolysis. In this context, visible-light photocatalysis has emerged as an ideal approach to provide highly reductive systems for the activation of inert substrates via single-electron reduction under mild conditions. In this review, we highlight some recent contributions to this field, classify them as single- or multiphoton excitation systems, elucidate the mechanisms with different super electron donors, and analyze their structural features on reducibility. Furthermore, the limitations and potential applications of this field will be discussed. Reductive organic transformations, which are important in both academia and industry to generate valuable chemicals, have been widely investigated. However, the reductive transformations of inert substrates still face many challenges, such as high cost and potential safety issues arising from strong reductants in excess, UVC light irradiation, or strong current density for electrolysis. In this context, visible-light photocatalysis has emerged as an ideal approach to provide highly reductive systems for the activation of inert substrates via single-electron reduction under mild conditions. In this review, we highlight some recent contributions to this field, classify them as single- or multiphoton excitation systems, elucidate the mechanisms with different super electron donors, and analyze their structural features on reducibility. Furthermore, the limitations and potential applications of this field will be discussed. proton-transfer reactions play critical roles in biology and chemistry, in which a proton is transferred from one atom to another atom. substrates with very negative reduction potentials, Ered < –2.0 V. reductants that are needed and consumed in stoichiometric amounts for the reduction of catalyst in the reaction. a reductive reaction of a substrate that proceeds by transferring one electron. highly aggressive species that can force chemical transformations of otherwise unreactive molecules. an activation mode for a substrate being reduced or oxidized while gaining or losing two electrons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要减肥世开关注了科研通微信公众号
1秒前
李健应助沉甸甸采纳,获得10
3秒前
谭歆柔发布了新的文献求助10
3秒前
3秒前
ruby完成签到,获得积分10
4秒前
ruby发布了新的文献求助10
8秒前
润物无声完成签到,获得积分10
12秒前
Leo_Sun完成签到,获得积分10
15秒前
火花发布了新的文献求助10
16秒前
SciGPT应助要减肥世开采纳,获得30
23秒前
kajikaji完成签到,获得积分10
25秒前
25秒前
Ulrica完成签到,获得积分10
32秒前
空白完成签到,获得积分10
33秒前
个性襄完成签到,获得积分10
36秒前
典雅长颈鹿完成签到,获得积分10
38秒前
38秒前
March完成签到,获得积分10
39秒前
41秒前
42秒前
顾家老攻完成签到,获得积分10
42秒前
44秒前
iiiid完成签到,获得积分10
45秒前
47秒前
共行完成签到 ,获得积分10
50秒前
lily完成签到 ,获得积分10
55秒前
幸福的向彤完成签到,获得积分10
1分钟前
星辰坠于海完成签到,获得积分0
1分钟前
大个应助标致的星月采纳,获得10
1分钟前
Jes发布了新的文献求助30
1分钟前
毅诚菌完成签到 ,获得积分10
1分钟前
patrick完成签到 ,获得积分10
1分钟前
lily发布了新的文献求助10
1分钟前
丙子哥完成签到 ,获得积分10
1分钟前
1分钟前
酷波er应助高挑的迎夏采纳,获得30
1分钟前
1分钟前
Jes完成签到,获得积分10
1分钟前
斯文败类应助哈哈采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776514
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208390
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872