An Exergame-Integrated IoT-Based Ergometer System Delivers Personalized Training Programs for Older Adults and Enhances Physical Fitness: A Pilot Randomized Controlled Trial

随机对照试验 物理疗法 灵活性(工程) 会话(web分析) 节奏 考试(生物学) 身体素质 医学 有氧运动 物理医学与康复 计算机科学 万维网 古生物学 外科 统计 生物 数学
作者
Chih‐Chun Lin,Yu-Sheng Lin,Chien-Hsien Yeh,Chien-Chun Huang,Li‐Chieh Kuo,Fong‐Chin Su
出处
期刊:Gerontology [Karger Publishers]
卷期号:69 (6): 768-782 被引量:6
标识
DOI:10.1159/000526951
摘要

Introduction: Regular physical exercise is believed to counteract the adverse physiological consequences of aging. However, smart fitness equipment specifically designed for older adults is quite rare. Here we designed an exergame-integrated internet of things (IoT)-based ergometer system (EIoT-ergo) that delivers personalized exercise prescriptions for older adults. First, physical fitness was evaluated using the Senior Fitness Test (SFT) application. Then, radio frequency identification (RFID) triggered the EIoT-ergo to deliver the corresponding exercise session based on the individual level of physical fitness. The exercise intensity during each workout was measured to generate the next exercise session. Further, EIoT-ergo provides an exergame to help users control and maintain their optimal cadence while engaging in exercise. Methods: This was a randomized controlled trial with 1:1 randomization. Participants were older adults, 50+ years of age (N = 35), who are active in their community. Participants in the EIoT-ergo group received a 12-week personalized exercise program delivered by EIoT-ergo for 30 min per session, with 2 sessions per week. Participants in the control group continued with their usual activities. A senior’s fitness test and a health questionnaire were assessed at baseline and at a 13-week reassessment. The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST) was used to evaluate the satisfaction of EIoT-ergo. Results: Compared with the control group, the EIoT-ergo group showed significant improvements in muscle strength (time-by-group interaction, sit-to-stand: β = 5.013, p < 0.001), flexibility (back stretch: β = 4.008, p = 0.005; and sit-and-reach: β = 4.730, p = 0.04), and aerobic endurance (2-min step: β = 9.262, p = 0.03). The body composition was also improved in the EIoT-ergo group (body mass index: β = −0.737, p < 0.001; and skeletal muscle index: β = 0.268, p = 0.03). Satisfaction with EIoT-ergo was shown in QUEST, with an average score of 4.4 ± 0.32 (5 for very satisfied). The percentage maximum heart rate in each session also indicated that EIoT-ergo can gradually build up the exercise intensity of users. Conclusions: EIoT-ergo was developed to provide personal identification, exergames, intelligent exercise prescriptions, and remote monitoring, as well as to significantly enhance the physical fitness of the elderly individuals under study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助kk采纳,获得10
1秒前
1秒前
852应助昵称无法显示采纳,获得10
1秒前
2秒前
GGbond完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
金光闪闪完成签到,获得积分10
5秒前
sean'tang发布了新的文献求助10
5秒前
风会代我伴你完成签到,获得积分10
6秒前
牧紊发布了新的文献求助10
6秒前
温匕发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
白学长完成签到,获得积分10
7秒前
罗伊黄发布了新的文献求助10
7秒前
7秒前
7秒前
美好雨竹完成签到 ,获得积分10
8秒前
wang完成签到,获得积分10
8秒前
Aaron发布了新的文献求助10
8秒前
鸡蛋鸭蛋荷包蛋完成签到,获得积分10
8秒前
pjmwj发布了新的文献求助10
8秒前
科研通AI2S应助DTS采纳,获得10
8秒前
9秒前
9秒前
木木三完成签到,获得积分10
9秒前
chunyan_sysu完成签到,获得积分10
10秒前
刘梦瑶发布了新的文献求助10
11秒前
Robbins发布了新的文献求助10
11秒前
orixero应助雷小仙儿采纳,获得10
12秒前
12秒前
糖糖发布了新的文献求助10
12秒前
178181发布了新的文献求助10
12秒前
杨金城发布了新的文献求助10
12秒前
13秒前
13秒前
komatsumiho完成签到,获得积分10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Chalcogen–Nitrogen Chemistry 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4025218
求助须知:如何正确求助?哪些是违规求助? 3565055
关于积分的说明 11347987
捐赠科研通 3296132
什么是DOI,文献DOI怎么找? 1815473
邀请新用户注册赠送积分活动 890093
科研通“疑难数据库(出版商)”最低求助积分说明 813266