A multi‐scale, multi‐region and attention mechanism‐based deep learning framework for prediction of grading in hepatocellular carcinoma

分级(工程) 人工智能 肝细胞癌 计算机科学 深度学习 医学 比例(比率) 机制(生物学) 医学物理学 物理 量子力学 工程类 土木工程 癌症研究
作者
Jingwei Wei,Qian Ji,Yu Gao,Xiaozhen Yang,Donghui Guo,Dongsheng Gu,Chunwang Yuan,Jie Tian,Da‐Wei Ding
出处
期刊:Medical Physics [Wiley]
卷期号:50 (4): 2290-2302 被引量:9
标识
DOI:10.1002/mp.16127
摘要

Abstract Background Histopathological grading is a significant risk factor for postsurgical recurrence in hepatocellular carcinoma (HCC). Preoperative knowledge of histopathological grading could provide instructive guidance for individualized treatment decision‐making in HCC management. Purpose This study aims to develop and validate a newly proposed deep learning model to predict histopathological grading in HCC with improved accuracy. Methods In this dual‐centre study, we retrospectively enrolled 384 HCC patients with complete clinical, pathological and radiological data. Aiming to synthesize radiological information derived from both tumour parenchyma and peritumoral microenvironment regions, a modelling strategy based on a multi‐scale and multi‐region dense connected convolutional neural network (MSMR‐DenseCNNs) was proposed to predict histopathological grading using preoperative contrast enhanced computed tomography (CT) images. Multi‐scale inputs were defined as three‐scale enlargement of an original minimum bounding box in width and height by given pixels, which correspondingly contained more peritumoral analysis areas with the enlargement. Multi‐region inputs were defined as three regions of interest (ROIs) including a squared ROI, a precisely delineated tumour ROI, and a peritumoral tissue ROI. The DenseCNN structure was designed to consist of a shallow feature extraction layer, dense block module, and transition and attention module. The proposed MSMR‐DenseCNN was pretrained by the ImageNet dataset to capture basic graphic characteristics from the images and was retrained by the collected retrospective CT images. The predictive ability of the MSMR‐DenseCNN models on triphasic images was compared with a conventional radiomics model, radiological model and clinical model. Results MSMR‐DenseCNN applied to the delayed phase (DP) achieved the highest area under the curve (AUC) of 0.867 in the validation cohort for grading prediction, outperforming those on the arterial phase (AP) and portal venous phase (PVP). Fusion of the results on triphasic images did not increase the predictive ability, which underscored the role of DP for grading prediction. Compared with a single‐scale and single‐region network, the DP‐phase based MSMR‐DenseCNN model remarkably raised sensitivity from 67.4% to 75.5% with comparable specificity of 78.6%. MSMR‐DenseCNN on DP defeated conventional radiomics, radiological and clinical models, where the AUCs were correspondingly 0.765, 0.695 and 0.612 in the validation cohort. Conclusions The MSMR‐DenseCNN modelling strategy increased the accuracy for preoperative prediction of grading in HCC, and enlightens similar radiological analysis pipelines in a variety of clinical scenarios in HCC management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助heal采纳,获得10
刚刚
月啦啦发布了新的文献求助10
3秒前
科研通AI5应助谨慎的雁桃采纳,获得30
4秒前
qqq发布了新的文献求助10
4秒前
Orange应助陈可欣采纳,获得10
4秒前
SunnyZjw发布了新的文献求助10
5秒前
daidai发布了新的文献求助10
5秒前
6秒前
上善若水完成签到 ,获得积分10
7秒前
深情安青应助土拨鼠采纳,获得10
7秒前
Jasper应助CHB只争朝夕采纳,获得10
8秒前
Abelsci完成签到,获得积分0
8秒前
Wangchenghan发布了新的文献求助10
9秒前
10秒前
烟花应助拉赫马尼洛夫采纳,获得30
14秒前
月啦啦完成签到,获得积分10
16秒前
科研通AI5应助阿渺采纳,获得10
16秒前
16秒前
lxlcx完成签到,获得积分10
16秒前
16秒前
DI完成签到 ,获得积分10
17秒前
玖月完成签到,获得积分10
17秒前
星辰大海应助SDNUDRUG采纳,获得10
18秒前
19秒前
Lee发布了新的文献求助10
20秒前
20秒前
缓慢采柳完成签到 ,获得积分10
22秒前
科研通AI5应助Wangchenghan采纳,获得10
22秒前
23秒前
niu发布了新的文献求助10
24秒前
活力的招牌完成签到 ,获得积分10
25秒前
高有财完成签到 ,获得积分10
27秒前
27秒前
上官若男应助xgx984采纳,获得10
28秒前
陈泽发布了新的文献求助30
28秒前
科研通AI5应助daidai采纳,获得10
29秒前
29秒前
无花果应助Mastertry采纳,获得10
32秒前
Loik完成签到,获得积分20
32秒前
Loik发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669