亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adsorbed p‐Aminothiophenol Molecules on Platinum Nanoparticles Improve Electrocatalytic Hydrogen Evolution

铂金 催化作用 吸附 铂纳米粒子 材料科学 分子 纳米颗粒 电催化剂 氢分子 氢气储存 纳米技术 电化学 化学 电极 有机化学 物理化学
作者
Jin Wang,Jinhong Yu,Junjie Wang,Kaili Wang,Liuyingzi Yu,Chengcheng Zhu,Kun Gao,Zhongyan Gong,Zhuoyao Li,Rajkumar Devasenathipathy,Dongyu Cai,Haijiao Xie,Gang Lü
出处
期刊:Small [Wiley]
卷期号:19 (15) 被引量:15
标识
DOI:10.1002/smll.202207135
摘要

Electrocatalytic hydrogen evolution is an important approach to produce clean energy, and many electrocatalysts (e.g., platinum) are developed for hydrogen production. However, the electrocatalytic efficiency of commonly used metal catalysts needs to be improved to compensate their high cost. Herein, the electrocatalytic efficiency of platinum nanoparticles (PtNPs) in hydrogen evolution is largely improved via simple surface adsorption of sub-monolayer p-aminothiophenol (PATP) molecules. The overpotential goes down to 86.1 mV, which is 50.2 mV lower than that on naked PtNPs. This catalytic activity is even better than that of 20 wt.% Pt/C, despite the much smaller active surface area of PATP-adsorbed PtNPs than Pt/C. It is theoretically and experimentally confirmed that the improved electrocatalytic activity in hydrogen evolution can be attributed to the change in electronic structure of PtNPs induced by surface adsorption of PATP molecules. More importantly, this strategy can also be used to improve the electrocatalytic activity of palladium, gold, and silver nanoparticles. Therefore, this work provides a simple, convenient, and versatile method for improving the electrocatalytic activity of metal nanocatalysts. This surface adsorption strategy may also be used for improving the efficiency of many other nanocatalysts in many reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Able采纳,获得10
2秒前
10秒前
科研通AI5应助调皮帆布鞋采纳,获得10
24秒前
jtksbf完成签到,获得积分10
25秒前
wiwia完成签到,获得积分10
30秒前
34秒前
39秒前
Tan完成签到,获得积分10
40秒前
41秒前
Tan发布了新的文献求助10
44秒前
chenjzhuc完成签到,获得积分10
46秒前
48秒前
51秒前
Able发布了新的文献求助10
56秒前
YUUNEEQUE完成签到,获得积分10
57秒前
xyz发布了新的文献求助10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
xyz完成签到,获得积分10
1分钟前
heqiujing发布了新的文献求助10
1分钟前
1分钟前
AiHaraNeko完成签到,获得积分10
1分钟前
SSS完成签到,获得积分10
1分钟前
酷波er应助zzzxh采纳,获得10
1分钟前
heqiujing完成签到,获得积分20
2分钟前
3分钟前
Lucas应助科研通管家采纳,获得30
3分钟前
3分钟前
3分钟前
dkb发布了新的文献求助20
3分钟前
3分钟前
3分钟前
领导范儿应助烽烽烽采纳,获得30
3分钟前
舒服的觅夏完成签到,获得积分20
3分钟前
于洋完成签到 ,获得积分10
3分钟前
香蕉觅云应助dkb采纳,获得10
3分钟前
4分钟前
4分钟前
无花果应助krajicek采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843203
求助须知:如何正确求助?哪些是违规求助? 3385459
关于积分的说明 10540536
捐赠科研通 3106072
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823778
科研通“疑难数据库(出版商)”最低求助积分说明 774264