免疫疗法
基因签名
生物
转录组
蛋白质组学
组学
肺癌
癌症免疫疗法
免疫系统
计算生物学
肿瘤微环境
生物信息学
肿瘤科
免疫学
基因
医学
基因表达
遗传学
作者
Thazin Nwe Aung,James Monkman,Jonathan Warrell,Ioannis Vathiotis,Katherine Bates,Niki Gavrielatou,Ioannis P. Trontzas,Chin Wee Tan,Aileen I. Fernandez,Myrto Moutafi,Ken O’ Byrne,Kurt A. Schalper,Konstantinos Syrigos,Roy S. Herbst,Arutha Kulasinghe,David L. Rimm
出处
期刊:Nature Genetics
[Nature Portfolio]
日期:2025-10-01
卷期号:57 (10): 2482-2493
标识
DOI:10.1038/s41588-025-02351-7
摘要
Abstract Non-small cell lung cancer (NSCLC) shows variable responses to immunotherapy, highlighting the need for biomarkers to guide patient selection. We applied a spatial multi-omics approach to 234 advanced NSCLC patients treated with programmed death 1-based immunotherapy across three cohorts to identify biomarkers associated with outcome. Spatial proteomics ( n = 67) and spatial compartment-based transcriptomics ( n = 131) enabled profiling of the tumor immune microenvironment (TIME). Using spatial proteomics, we identified a resistance cell-type signature including proliferating tumor cells, granulocytes, vessels (hazard ratio (HR) = 3.8, P = 0.004) and a response signature, including M1/M2 macrophages and CD4 T cells (HR = 0.4, P = 0.019). We then generated a cell-to-gene resistance signature using spatial transcriptomics, which was predictive of poor outcomes (HR = 5.3, 2.2, 1.7 across Yale, University of Queensland and University of Athens cohorts), while a cell-to-gene response signature predicted favorable outcomes (HR = 0.22, 0.38 and 0.56, respectively). This framework enables robust TIME modeling and identifies biomarkers to support precision immunotherapy in NSCLC.
科研通智能强力驱动
Strongly Powered by AbleSci AI