亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Will Your Next Pair Programming Partner Be Human? An Empirical Evaluation of Generative AI as a Collaborative Teammate in a Semester-Long Classroom Setting

计算机科学 生成语法 实证研究 人工智能 多媒体 数学 统计
作者
Wenhan Lyu,Yimeng Wang,Yifan Sun,Yixuan Zhang
标识
DOI:10.1145/3698205.3729544
摘要

Generative AI (GenAI), especially Large Language Models (LLMs), is rapidly reshaping both programming workflows and computer science education. Many programmers now incorporate GenAI tools into their workflows, including for collaborative coding tasks such as pair programming. While prior research has demonstrated the benefits of traditional pair programming and begun to explore GenAI-assisted coding, the role of LLM-based tools as collaborators in pair programming remains underexamined. In this work, we conducted a mixed-methods study with 39 undergraduate students to examine how GenAI influences collaboration, learning, and performance in pair programming. Specifically, students completed six in-class assignments under three conditions: Traditional Pair Programming (PP), Pair Programming with GenAI (PAI), and Solo Programming with GenAI (SAI). They used both LLM-based inline completion tools (e.g., GitHub Copilot) and LLM-based conversational tools (e.g., ChatGPT). Our results show that students in PAI achieved the highest assignment scores, whereas those in SAI attained the lowest. Additionally, students' attitudes toward LLMs' programming capabilities improved significantly after collaborating with LLM-based tools, and preferences were largely shaped by the perceived usefulness for completing assignments and learning programming skills, as well as the quality of collaboration. Our qualitative findings further reveal that while students appreciated LLM-based tools as valuable pair programming partners, they also identified limitations and had different expectations compared to human teammates. Our study provides one of the first empirical evaluations of GenAI as a pair programming collaborator through a comparison of three conditions (PP, PAI, and SAI). We also discuss the design implications and pedagogical considerations for future GenAI-assisted pair programming approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
14秒前
hahha发布了新的文献求助10
20秒前
20秒前
22秒前
Gavin发布了新的文献求助10
25秒前
26秒前
哈哈完成签到 ,获得积分20
36秒前
Owen应助曦耀采纳,获得10
40秒前
43秒前
哈哈关注了科研通微信公众号
44秒前
52秒前
59秒前
1分钟前
hahha完成签到 ,获得积分20
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
西升东落完成签到,获得积分10
1分钟前
1分钟前
1分钟前
田様应助尊敬的芷卉采纳,获得10
1分钟前
lytyl发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
赘婿应助尊敬的芷卉采纳,获得10
2分钟前
2分钟前
爆米花应助哈哈采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628200
求助须知:如何正确求助?哪些是违规求助? 4716020
关于积分的说明 14963827
捐赠科研通 4785884
什么是DOI,文献DOI怎么找? 2555439
邀请新用户注册赠送积分活动 1516729
关于科研通互助平台的介绍 1477281