Nanostructured Layered Vanadium Oxide Modified by Hydrated Manganese Ions for Boosting Zn2+ Storage

氧化锰 Boosting(机器学习) 离子 氧化钒 材料科学 无机化学 氧化物 化学 冶金 计算机科学 有机化学 机器学习
作者
Shuyue Li,Liangliang Wang,Liping Chen,Juan Wang,Guannan Zu,Juan Wang
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (13): 15162-15170
标识
DOI:10.1021/acsanm.4c01933
摘要

Aqueous zinc-ion batteries (AZIBs) are highly competitive in the realm of large-scale energy storage applications due to their characteristics, including superior power density, affordable prices, high safety, and sustainability. Nevertheless, exploring appropriate cathode materials is restricted by low electronic conductivity, sluggish Zn2+ ion diffusion kinetics, and structural degradation during cycling. Herein, we propose a three-birds-with-one-stone strategy of incorporating hydrated manganese ions into layered vanadium oxide to develop an advanced cathode material for Zn2+ storage. Experimental studies and theoretical calculations demonstrate that the incorporated Mn2+ ions not only play a vital role in improving structural stability but also regulating the electronic structure and facilitating the transportation of ions and electrons. Notably, the incorporated Mn2+ induces controllable morphology regulation and fabricated a nanoscale three-dimensional flower-like material with self-assembled nanosheets in a well-designed nanomicrohierarchical structure, thus providing sufficient active sites to accommodate more Zn2+ ions. Benefiting from the above-mentioned ternary merits, the nanoscale Mn0.5V2O5·2.4H2O cathode achieves an excellent capacity of 422 mA h g–1 at 0.1 A g–1 and high capacity retention of 89% over 1000 cycles at 5 A g–1, much higher than that of pristine V2O5·2H2O without Mn2+ (14% over 1000 cycles at 5 A g–1). The modification strategy offers perspective on an effective methodology for exploring advanced cathodes with high electrochemical properties for aqueous rechargeable batteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
wangrswjx完成签到,获得积分10
3秒前
安晗默完成签到 ,获得积分10
3秒前
4秒前
饼子完成签到 ,获得积分10
5秒前
天衣无缝发布了新的文献求助10
6秒前
6秒前
Komorebi完成签到,获得积分10
7秒前
俭朴依白完成签到,获得积分10
8秒前
9秒前
9秒前
星桥火树彻明开完成签到,获得积分10
10秒前
11秒前
laika发布了新的文献求助10
11秒前
江果有点甜完成签到,获得积分10
11秒前
jialin完成签到,获得积分10
12秒前
xYueea发布了新的文献求助10
15秒前
乱武发布了新的文献求助10
16秒前
20秒前
Orange应助橡树采纳,获得10
25秒前
26秒前
Jacky完成签到,获得积分10
30秒前
付创完成签到,获得积分10
32秒前
乐乐应助天衣无缝采纳,获得10
32秒前
弹剑作歌完成签到,获得积分10
33秒前
33秒前
35秒前
香蕉茹妖完成签到,获得积分10
36秒前
默默友儿发布了新的文献求助10
37秒前
37秒前
Jenny应助cctv18采纳,获得150
38秒前
41秒前
42秒前
45秒前
222完成签到 ,获得积分10
46秒前
50秒前
斐嘿嘿发布了新的文献求助10
50秒前
科目三应助liujizhuo采纳,获得10
50秒前
传统的银耳汤完成签到,获得积分10
51秒前
小学生库里完成签到,获得积分10
52秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846014
求助须知:如何正确求助?哪些是违规求助? 3388362
关于积分的说明 10552922
捐赠科研通 3108936
什么是DOI,文献DOI怎么找? 1713223
邀请新用户注册赠送积分活动 824620
科研通“疑难数据库(出版商)”最低求助积分说明 774982