Category Alignment Mechanism for Few-Shot Image Classification

判别式 计算机科学 人工智能 模式识别(心理学) 匹配(统计) 水准点(测量) 公制(单位) 特征(语言学) 任务(项目管理) 特征选择 相似性(几何) 推论 上下文图像分类 图像(数学) 集合(抽象数据类型) 机器学习 数学 语言学 统计 运营管理 哲学 管理 大地测量学 经济 程序设计语言 地理
作者
Zhenyu Zhou,Lei Luo,Tianrui Liu,Qing Liao,Xinwang Liu,En Zhu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tnnls.2024.3393928
摘要

While humans can excel at image classification tasks by comparing a few images, existing metric-based few-shot classification methods are still not well adapted to novel tasks. Performance declines rapidly when encountering new patterns, as feature embeddings cannot effectively encode discriminative properties. Moreover, existing matching methods inadequately utilize support set samples, focusing only on comparing query samples to category prototypes without exploiting contrastive relationships across categories for discriminative features. In this work, we propose a method where query samples select their most category-representative features for matching, making feature embeddings adaptable and category-related. We introduce a category alignment mechanism (CAM) to align query image features with different categories. CAM ensures features chosen for matching are distinct and strongly correlated to intra-and inter-contrastive relationships within categories, making extracted features highly related to their respective categories. CAM is parameter-free, requires no extra training to adapt to new tasks, and adjusts features for matching when task categories change. We also implement a cross-validation-based feature selection technique for support samples, generating more discriminative category prototypes. We implement two versions of inductive and transductive inference and conduct extensive experiments on six datasets to demonstrate the effectiveness of our algorithm. The results indicate that our method consistently yields performance improvements on benchmark tasks and surpasses the current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助坦率的寻双采纳,获得10
1秒前
缥缈纲应助舒适路人采纳,获得10
1秒前
希尔完成签到,获得积分10
1秒前
1秒前
卿相白衣完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
ken完成签到,获得积分10
6秒前
魏猛完成签到,获得积分10
6秒前
加菲丰丰应助tkurds采纳,获得10
7秒前
Mary发布了新的文献求助10
8秒前
ken发布了新的文献求助10
8秒前
9秒前
9秒前
NexusExplorer应助芋芋采纳,获得10
9秒前
10秒前
10秒前
whatever应助微醺潮汐采纳,获得20
11秒前
11秒前
aser发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
heavenhorse应助舒适路人采纳,获得10
13秒前
加菲丰丰应助skyleon采纳,获得10
14秒前
14秒前
rwww发布了新的文献求助10
14秒前
稳重蜗牛完成签到,获得积分10
14秒前
含蓄尔竹发布了新的文献求助10
16秒前
17秒前
科研通AI5应助秋子采纳,获得10
17秒前
哈哈哈发布了新的文献求助60
17秒前
rws发布了新的文献求助10
17秒前
17秒前
之桃完成签到,获得积分10
17秒前
呱牛完成签到,获得积分10
18秒前
18秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785970
求助须知:如何正确求助?哪些是违规求助? 3331479
关于积分的说明 10251380
捐赠科研通 3046903
什么是DOI,文献DOI怎么找? 1672249
邀请新用户注册赠送积分活动 801168
科研通“疑难数据库(出版商)”最低求助积分说明 759994