MECOM: A Meta-Completion Network for Fine-Grained Recognition with Incomplete Multi-Modalities

计算机科学 人工智能 杠杆(统计) 模态(人机交互) 模式 判别式 机器学习 缺少数据 条件随机场 模式识别(心理学) 社会科学 社会学
作者
Xiu-Shen Wei,Hongtao Yu,Anqi Xu,Faen Zhang,Yuxin Peng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3456-3469
标识
DOI:10.1109/tip.2024.3403051
摘要

Our work focuses on tackling the problem of fine-grained recognition with incomplete multi-modal data, which is overlooked by previous work in the literature. It is desirable to not only capture fine-grained patterns of objects but also alleviate the challenges of missing modalities for such a practical problem. In this paper, we propose to leverage a meta-learning strategy to learn model abilities of both fast modal adaptation and more importantly missing modality completion across a variety of incomplete multi-modality learning tasks. Based on that, we develop a meta-completion method, termed as MECOM, to perform multimodal fusion and explicit missing modality completion by our proposals of cross-modal attention and decoupling reconstruction. To further improve fine-grained recognition accuracy, an additional partial stream (as a counterpart of the main stream of MECOM, i.e., holistic) and the part-level features (corresponding to fine-grained objects' parts) selection are designed, which are tailored for fine-grained nature to capture discriminative but subtle part-level patterns. Comprehensive experiments from quantitative and qualitative aspects, as well as various ablation studies, on two fine-grained multimodal datasets and one generic multimodal dataset show our superiority over competing methods. Our code is open-source and available at https://github.com/SEU-VIPGroup/MECOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cen发布了新的文献求助10
4秒前
研友_VZG7GZ应助CT采纳,获得10
6秒前
科研通AI5应助共行采纳,获得10
8秒前
菠萝完成签到 ,获得积分10
8秒前
9秒前
10秒前
12秒前
12秒前
Jasper应助科研通管家采纳,获得10
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
zmnzmnzmn应助科研通管家采纳,获得10
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
HEIKU应助科研通管家采纳,获得10
14秒前
666感冒灵发布了新的文献求助10
14秒前
zho应助科研通管家采纳,获得10
14秒前
HEIKU应助科研通管家采纳,获得10
14秒前
14秒前
HEIKU应助科研通管家采纳,获得10
14秒前
HEIKU应助科研通管家采纳,获得10
14秒前
zmnzmnzmn应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
16秒前
16秒前
亲家母发布了新的文献求助10
18秒前
CT发布了新的文献求助10
18秒前
19秒前
745789发布了新的文献求助10
20秒前
shikaly发布了新的文献求助10
21秒前
guaxi完成签到,获得积分10
21秒前
悄悄.完成签到,获得积分10
22秒前
yy发布了新的文献求助30
25秒前
wiara完成签到,获得积分20
26秒前
小蘑菇应助李广辉采纳,获得10
27秒前
张长剑发布了新的文献求助10
29秒前
江河哈哈应助gigadrill采纳,获得10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778900
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218406
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440