已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Foundations of machine learning for low-temperature plasmas: methods and case studies

数据科学 计算机科学 人工智能 微电子 破译 机器学习 数据驱动 纳米技术 生物信息学 材料科学 生物
作者
Angelo D. Bonzanini,Ketong Shao,David B. Graves,Satoshi Hamaguchi,Ali Mesbah
出处
期刊:Plasma Sources Science and Technology [IOP Publishing]
卷期号:32 (2): 024003-024003 被引量:25
标识
DOI:10.1088/1361-6595/acb28c
摘要

Abstract Machine learning (ML) and artificial intelligence have proven to be an invaluable tool in tackling a vast array of scientific, engineering, and societal problems. The main drivers behind the recent proliferation of ML in practically all aspects of science and technology can be attributed to: (a) improved data acquisition and inexpensive data storage; (b) exponential growth in computing power; and (c) availability of open-source software and resources that have made the use of state-of-the-art ML algorithms widely accessible. The impact of ML on the field of low-temperature plasmas (LTPs) could be particularly significant in the emerging applications that involve plasma treatment of complex interfaces in areas ranging from the manufacture of microelectronics and processing of quantum materials, to the LTP-driven electrification of the chemical industry, and to medicine and biotechnology. This is primarily due to the complex and poorly-understood nature of the plasma-surface interactions in these applications that pose unique challenges to the modeling, diagnostics, and predictive control of LTPs. As the use of ML is becoming more prevalent, it is increasingly paramount for the LTP community to be able to critically analyze and assess the concepts and techniques behind data-driven approaches. To this end, the goal of this paper is to provide a tutorial overview of some of the widely-used ML methods that can be useful, amongst others, for discovering and correlating patterns in the data that may be otherwise impractical to decipher by human intuition alone, for learning multivariable nonlinear data-driven prediction models that are capable of describing the complex behavior of plasma interacting with interfaces, and for guiding the design of experiments to explore the parameter space of plasma-assisted processes in a systematic and resource-efficient manner. We illustrate the utility of various supervised, unsupervised and active learning methods using LTP datasets consisting of commonly-available, information-rich measurements (e.g. optical emission spectra, current–voltage characteristics, scanning electron microscope images, infrared surface temperature measurements, Fourier transform infrared spectra). All the ML demonstrations presented in this paper are carried out using open-source software; the datasets and codes are made publicly available. The FAIR guiding principles for scientific data management and stewardship can accelerate the adoption and development of ML in the LTP community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任乐乐发布了新的文献求助10
2秒前
2秒前
温良发布了新的文献求助10
4秒前
财源滚滚发布了新的文献求助10
7秒前
8秒前
CodeCraft应助干净山柳采纳,获得10
11秒前
SciGPT应助顺利的寄松采纳,获得10
11秒前
科研通AI5应助贾舒涵采纳,获得50
15秒前
华仔应助dnmd采纳,获得10
15秒前
小黑是个甜仔完成签到,获得积分10
16秒前
16秒前
悲凉的念波完成签到 ,获得积分10
18秒前
LJ徽完成签到 ,获得积分0
18秒前
20秒前
sfsfes完成签到 ,获得积分10
21秒前
21秒前
22秒前
FF完成签到 ,获得积分10
23秒前
24秒前
勤劳糜发布了新的文献求助10
24秒前
11_aa完成签到,获得积分10
24秒前
干净山柳发布了新的文献求助10
25秒前
kk发布了新的文献求助10
25秒前
26秒前
27秒前
ypyue完成签到,获得积分10
28秒前
dnmd发布了新的文献求助10
29秒前
30秒前
30秒前
30秒前
东方烨伟发布了新的文献求助10
31秒前
Ss发布了新的文献求助10
33秒前
34秒前
35秒前
贾舒涵发布了新的文献求助50
36秒前
普鲁卡因发布了新的文献求助10
36秒前
东方烨伟完成签到,获得积分10
38秒前
38秒前
nbnbaaa发布了新的文献求助10
39秒前
玻尿酸发布了新的文献求助10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787983
求助须知:如何正确求助?哪些是违规求助? 3333553
关于积分的说明 10262434
捐赠科研通 3049355
什么是DOI,文献DOI怎么找? 1673516
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760475