Surveying the Genetic Design Space for Transcription Factor-Based Metabolite Biosensors: Synthetic Gamma-Aminobutyric Acid and Propionate Biosensors in E. coli Nissle 1917

生物传感器 代谢物 丙酸盐 大肠杆菌 生物化学 生物 化学 计算生物学 遗传学 基因
作者
Matthew Lebovich,Lauren B. Andrews
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media]
卷期号:10 被引量:11
标识
DOI:10.3389/fbioe.2022.938056
摘要

Engineered probiotic bacteria have been proposed as a next-generation strategy for noninvasively detecting biomarkers in the gastrointestinal tract and interrogating the gut-brain axis. A major challenge impeding the implementation of this strategy has been the difficulty to engineer the necessary whole-cell biosensors. Creation of transcription factor-based biosensors in a clinically-relevant strain often requires significant tuning of the genetic parts and gene expression to achieve the dynamic range and sensitivity required. Here, we propose an approach to efficiently engineer transcription-factor based metabolite biosensors that uses a design prototyping construct to quickly assay the gene expression design space and identify an optimal genetic design. We demonstrate this approach using the probiotic bacterium Escherichia coli Nissle 1917 (EcN) and two neuroactive gut metabolites: the neurotransmitter gamma-aminobutyric acid (GABA) and the short-chain fatty acid propionate. The EcN propionate sensor, utilizing the PrpR transcriptional activator from E. coli, has a large 59-fold dynamic range and >500-fold increased sensitivity that matches biologically-relevant concentrations. Our EcN GABA biosensor uses the GabR transcriptional repressor from Bacillus subtilis and a synthetic GabR-regulated promoter created in this study. This work reports the first known synthetic microbial whole-cell biosensor for GABA, which has an observed 138-fold activation in EcN at biologically-relevant concentrations. Using this rapid design prototyping approach, we engineer highly functional biosensors for specified in vivo metabolite concentrations that achieve a large dynamic range and high output promoter activity upon activation. This strategy may be broadly useful for accelerating the engineering of metabolite biosensors for living diagnostics and therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的柏柳完成签到 ,获得积分10
刚刚
lz完成签到 ,获得积分10
1秒前
Jasper应助XHW采纳,获得10
1秒前
天使完成签到 ,获得积分10
5秒前
Hang完成签到,获得积分10
8秒前
9秒前
DINGXH完成签到,获得积分10
10秒前
冰魂应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
16秒前
小李完成签到 ,获得积分10
16秒前
Owen应助斯文的道罡采纳,获得10
18秒前
lzf完成签到,获得积分10
20秒前
可爱的函函应助zzn采纳,获得10
21秒前
21秒前
YangJie完成签到,获得积分10
22秒前
28秒前
kai150333429发布了新的文献求助50
28秒前
billion完成签到,获得积分10
29秒前
32秒前
飞逝的冥想完成签到,获得积分10
34秒前
zzn发布了新的文献求助10
35秒前
2333完成签到,获得积分10
35秒前
aa关闭了aa文献求助
35秒前
36秒前
38秒前
39秒前
星梦完成签到 ,获得积分10
39秒前
39秒前
仁爱钢笔完成签到 ,获得积分10
40秒前
开放剑鬼完成签到,获得积分10
40秒前
44秒前
喜欢了发布了新的文献求助10
44秒前
44秒前
戴戴发布了新的文献求助10
46秒前
47秒前
48秒前
Sweety-完成签到 ,获得积分10
50秒前
不知武士发布了新的文献求助10
50秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
Enhance the effectiveness of affiliate marketing on Tiktok for young people 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831479
求助须知:如何正确求助?哪些是违规求助? 3373689
关于积分的说明 10481025
捐赠科研通 3093675
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307