亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiview Unsupervised Shapelet Learning for Multivariate Time Series Clustering

多元统计 计算机科学 人工智能 聚类分析 模式识别(心理学) 多元分析 系列(地层学) 无监督学习 突出 机器学习 古生物学 生物
作者
Nan Zhang,Shiliang Sun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (4): 4981-4996 被引量:28
标识
DOI:10.1109/tpami.2022.3198411
摘要

Multivariate time series clustering has become an important research topic in the time series learning task, which aims to discover the correlation among multiple sequences and partition multivariate time series data into several subsets. Although there are currently some methods that can handle this task, most of them fail to discover informative subsequences from multivariate time series instances. In this paper, we first propose a novel unsupervised shapelet learning with adaptive neighbors (USLA) model for learning salient multivariate subsequences (i.e., multivariate shapelets), where the importance of each variate can be auto-determined when given a candidate multivariate shapelet. USLA performs multivariate shapelet-transformed representation learning and local structure learning simultaneously, but the performance of USLA with multivariate shapelets of different lengths is comparable to that of isometric multivariate shapelets. In fact, the shapelet-transformed representations learned from multivariate shapelets of different lengths can all represent multivariate time series instances separately and often contain complementary information to each other. Therefore, we develop a novel multiview USLA (MUSLA) model which treats shapelet-transformed representations learned from shapelets of different lengths as different views. In this way, MUSLA learns the importance of each view and the neighbor graph matrix among multiview representations when candidate multivariate shapelets of different lengths are determined. Experimental results show that MUSLA outperforms other state-of-the-art multivariate time series algorithms on real-world multivariate time series datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
story发布了新的文献求助10
3秒前
25秒前
Wsh完成签到,获得积分10
28秒前
12发布了新的文献求助10
29秒前
机智诗兰发布了新的文献求助10
30秒前
科目三应助通义千问采纳,获得10
38秒前
热情的寄瑶完成签到 ,获得积分10
42秒前
44秒前
weijian完成签到,获得积分10
49秒前
通义千问发布了新的文献求助10
50秒前
机智诗兰完成签到,获得积分10
1分钟前
行走完成签到,获得积分10
1分钟前
Hello应助123采纳,获得10
1分钟前
12完成签到,获得积分10
1分钟前
12发布了新的文献求助10
1分钟前
1分钟前
fzzf完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
杨学清发布了新的文献求助10
1分钟前
123发布了新的文献求助10
2分钟前
bbbbfffff完成签到,获得积分10
2分钟前
11mao11完成签到 ,获得积分10
2分钟前
丘比特应助杨学清采纳,获得10
2分钟前
2分钟前
RFlord发布了新的文献求助10
2分钟前
陈富贵完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
谦让白凡发布了新的文献求助10
2分钟前
2分钟前
香蕉觅云应助等待凝海采纳,获得10
2分钟前
orchidaceae发布了新的文献求助10
2分钟前
酷波er应助RFlord采纳,获得10
2分钟前
2分钟前
等待凝海发布了新的文献求助10
2分钟前
2分钟前
orchidaceae完成签到,获得积分10
2分钟前
fantasy完成签到 ,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4567655
求助须知:如何正确求助?哪些是违规求助? 3990619
关于积分的说明 12354869
捐赠科研通 3662466
什么是DOI,文献DOI怎么找? 2018173
邀请新用户注册赠送积分活动 1052724
科研通“疑难数据库(出版商)”最低求助积分说明 940193