Integrating massive RNA-seq data to elucidate transcriptome dynamics in Drosophila melanogaster

黑腹果蝇 转录组 生物 计算生物学 RNA序列 果蝇属(亚属) 基因 基因表达 计算机科学 遗传学
作者
Sheng Hu Qian,Mengwei Shi,Dan-Yang Wang,Justin M. Fear,Ciyong Lu,Yi‐Xuan Tu,Hongshan Liu,Yuan Zhou,S. X. Zhang,Shanshan Yu,Brian Oliver,Zhenxia Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:2
标识
DOI:10.1093/bib/bbad177
摘要

The volume of ribonucleic acid (RNA)-seq data has increased exponentially, providing numerous new insights into various biological processes. However, due to significant practical challenges, such as data heterogeneity, it is still difficult to ensure the quality of these data when integrated. Although some quality control methods have been developed, sample consistency is rarely considered and these methods are susceptible to artificial factors. Here, we developed MassiveQC, an unsupervised machine learning-based approach, to automatically download and filter large-scale high-throughput data. In addition to the read quality used in other tools, MassiveQC also uses the alignment and expression quality as model features. Meanwhile, it is user-friendly since the cutoff is generated from self-reporting and is applicable to multimodal data. To explore its value, we applied MassiveQC to Drosophila RNA-seq data and generated a comprehensive transcriptome atlas across 28 tissues from embryogenesis to adulthood. We systematically characterized fly gene expression dynamics and found that genes with high expression dynamics were likely to be evolutionarily young and expressed at late developmental stages, exhibiting high nonsynonymous substitution rates and low phenotypic severity, and they were involved in simple regulatory programs. We also discovered that human and Drosophila had strong positive correlations in gene expression in orthologous organs, revealing the great potential of the Drosophila system for studying human development and disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_QLXe5n发布了新的文献求助10
4秒前
丝丢皮的完成签到 ,获得积分10
4秒前
5秒前
格纹完成签到,获得积分10
6秒前
科研通AI2S应助LXZ采纳,获得10
6秒前
7秒前
紧张的怜寒完成签到,获得积分20
7秒前
落雁沙发布了新的文献求助10
7秒前
游游完成签到,获得积分10
8秒前
不再褪色完成签到,获得积分10
9秒前
丝丢皮得完成签到 ,获得积分10
9秒前
10秒前
hyj发布了新的文献求助10
10秒前
天水完成签到,获得积分10
11秒前
Peacepea发布了新的文献求助10
11秒前
12秒前
13秒前
对照完成签到 ,获得积分10
14秒前
小巧梦山发布了新的文献求助10
15秒前
17秒前
科研通AI2S应助大利采纳,获得10
18秒前
赘婿应助杨洋采纳,获得10
18秒前
saberLee完成签到,获得积分10
19秒前
小贝壳要快乐吖完成签到,获得积分10
19秒前
yzy完成签到,获得积分10
21秒前
英俊的铭应助jnuszjz采纳,获得200
21秒前
爱科研的佳慧完成签到,获得积分10
23秒前
26秒前
你可以永远相信Sccc完成签到 ,获得积分10
26秒前
阿航完成签到,获得积分10
26秒前
osmanthus应助加菲丰丰采纳,获得10
27秒前
积极的奇异果完成签到 ,获得积分10
28秒前
29秒前
许甜甜鸭应助科研通管家采纳,获得10
29秒前
29秒前
ding应助科研通管家采纳,获得10
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
Hello应助科研通管家采纳,获得10
29秒前
自然夏槐应助科研通管家采纳,获得10
30秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823649
求助须知:如何正确求助?哪些是违规求助? 3366071
关于积分的说明 10438723
捐赠科研通 3085191
什么是DOI,文献DOI怎么找? 1697245
邀请新用户注册赠送积分活动 816302
科研通“疑难数据库(出版商)”最低求助积分说明 769492