Integrating massive RNA-seq data to elucidate transcriptome dynamics in Drosophila melanogaster

黑腹果蝇 转录组 生物 计算生物学 RNA序列 果蝇属(亚属) 基因 基因表达 计算机科学 遗传学
作者
Sheng Hu Qian,Mengwei Shi,Dan-Yang Wang,Justin M. Fear,Ciyong Lu,Yi‐Xuan Tu,Hongshan Liu,Yuan Zhou,S. X. Zhang,Shanshan Yu,Brian Oliver,Zhenxia Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:2
标识
DOI:10.1093/bib/bbad177
摘要

The volume of ribonucleic acid (RNA)-seq data has increased exponentially, providing numerous new insights into various biological processes. However, due to significant practical challenges, such as data heterogeneity, it is still difficult to ensure the quality of these data when integrated. Although some quality control methods have been developed, sample consistency is rarely considered and these methods are susceptible to artificial factors. Here, we developed MassiveQC, an unsupervised machine learning-based approach, to automatically download and filter large-scale high-throughput data. In addition to the read quality used in other tools, MassiveQC also uses the alignment and expression quality as model features. Meanwhile, it is user-friendly since the cutoff is generated from self-reporting and is applicable to multimodal data. To explore its value, we applied MassiveQC to Drosophila RNA-seq data and generated a comprehensive transcriptome atlas across 28 tissues from embryogenesis to adulthood. We systematically characterized fly gene expression dynamics and found that genes with high expression dynamics were likely to be evolutionarily young and expressed at late developmental stages, exhibiting high nonsynonymous substitution rates and low phenotypic severity, and they were involved in simple regulatory programs. We also discovered that human and Drosophila had strong positive correlations in gene expression in orthologous organs, revealing the great potential of the Drosophila system for studying human development and disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助哆啦A梦采纳,获得10
刚刚
刚刚
深情安青应助可靠的白容采纳,获得10
1秒前
1秒前
8R60d8应助rpe采纳,获得20
1秒前
花生仔应助wodetaiyangLLL采纳,获得10
1秒前
YingLei关注了科研通微信公众号
1秒前
2秒前
桐桐应助机智的秋珊采纳,获得30
2秒前
az完成签到,获得积分10
2秒前
solkatt发布了新的文献求助10
2秒前
唐老丫发布了新的文献求助10
2秒前
Lily完成签到,获得积分20
3秒前
Orange应助吴若魔采纳,获得10
3秒前
杰杰小杰发布了新的文献求助10
3秒前
3秒前
于林渤发布了新的文献求助10
3秒前
流水完成签到,获得积分10
4秒前
逢投必中完成签到 ,获得积分10
4秒前
搜集达人应助神勇的女孩采纳,获得10
5秒前
YIN发布了新的文献求助10
5秒前
Hester完成签到,获得积分0
5秒前
田様应助内向小熊猫采纳,获得10
6秒前
DQ8733发布了新的文献求助10
6秒前
hanshuo4400发布了新的文献求助10
7秒前
馒头完成签到,获得积分10
8秒前
wukailin完成签到 ,获得积分10
9秒前
充电宝应助烬湾采纳,获得10
9秒前
大个应助杰杰小杰采纳,获得10
9秒前
丘比特应助ENG采纳,获得10
9秒前
Owen应助wenbo采纳,获得10
9秒前
江应怜发布了新的文献求助10
10秒前
10秒前
研友_VZG7GZ应助陈凯采纳,获得10
10秒前
正直易云发布了新的文献求助10
10秒前
好久不见完成签到,获得积分10
10秒前
zwy109发布了新的文献求助10
10秒前
11秒前
大胆秋灵完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4747684
求助须知:如何正确求助?哪些是违规求助? 4094706
关于积分的说明 12668887
捐赠科研通 3806848
什么是DOI,文献DOI怎么找? 2101629
邀请新用户注册赠送积分活动 1126949
关于科研通互助平台的介绍 1003544