特征向量
随机矩阵
最大值和最小值
数学
马克西玛
高斯分布
基质(化学分析)
组合数学
统计
人口
力矩(物理)
数学分析
物理
量子力学
艺术
材料科学
人口学
社会学
表演艺术
复合材料
艺术史
作者
Jianwei Hu,Seydou Keita,Kang Fu
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2306.08335
摘要
Let $\bm{x}_1,\cdots,\bm{x}_n$ be a random sample of size $n$ from a $p$-dimensional population distribution, where $p=p(n)\rightarrow\infty$. Consider a symmetric matrix $W=X^\top X$ with parameters $n$ and $p$, where $X=(\bm{x}_1,\cdots,\bm{x}_n)^\top$. In this paper, motivated by model selection theory in high-dimensional statistics, we mainly investigate the asymptotic behavior of the eigenvalues of the principal minors of the random matrix $W$. For the Gaussian case, under a simple condition that $m=o(n/\log p)$, we obtain the asymptotic results on maxima and minima of the eigenvalues of all $m\times m$ principal minors of $W$. We also extend our results to general distributions with some moment conditions. Moreover, we gain the asymptotic results of the extreme eigenvalues of the principal minors in the case of the real Wigner matrix. Finally, similar results for the maxima and minima of the eigenvalues of all the principal minors with a size smaller than or equal to $m$ are also given.
科研通智能强力驱动
Strongly Powered by AbleSci AI