材料科学
过电位
催化作用
化学工程
分解水
电催化剂
阴极
氢
电解
制氢
电解水
贵金属
基质(水族馆)
电化学
电极
金属
冶金
有机化学
化学
物理化学
光催化
工程类
电解质
海洋学
地质学
作者
Gaoxin Lin,Anrui Dong,Zhiheng Li,Wenlong Li,Xing Cao,Yilong Zhao,Linqin Wang,Licheng Sun
标识
DOI:10.1002/adma.202507525
摘要
Abstract Noble metal‐free electrodes for anion exchange membrane water electrolysis (AEM‐WE) operating at high current densities are critical for sustainable hydrogen production. However, the massive amount of bubbles resulted in insufficient mass transfer and unevenly distributed local stress, which poses a major challenge in designing an efficient and robust hydrogen evolution catalyst. Herein, a facile chemical corrosion method is developed to synthesize an interlayer‐anchored NiMo/MoO 2 catalyst on a nickel foam (NF) substrate (NiMo/Int/NF) with high hydrogen evolution activity (overpotential of 80.2 ± 3.53 mV) and durability (stable for 5000 h) at 1000 mA cm −2 in 1 m KOH. The interlayer tightly anchors the catalytic layer to the substrate, providing high compressive strength and strong adhesion to mitigate the bubble shock at a high current density. In situ Raman and X‐ray diffraction analyses reveal that the heterostructural catalytic layer can accelerate the hydrogen evolution reaction with increased local pH and high component utilization. Using NiMo/Int/NF as the cathode, the assembled noble metal‐free AEM‐WE device exhibits a low cell voltage of 1.78 V at 1000 mA cm −2 (significantly lower than that of a Pt/C‐catalyzed cell (1.94 V)) while also showing excellent stability for 3000 h.
科研通智能强力驱动
Strongly Powered by AbleSci AI