计算机科学
工作流程
预处理器
水准点(测量)
可扩展性
鉴定(生物学)
数据挖掘
领域(数学分析)
数据科学
计算生物学
人工智能
生物
数据库
地图学
数学分析
植物
数学
地理
作者
Sergio Marco Salas,Louis B. Kuemmerle,Christoffer Mattsson-Langseth,Sebastian Tismeyer,Christophe Avenel,Taobo Hu,Habib Rehman,Marco Grillo,Paulo Czarnewski,Saga Helgadóttir,Katarína Tiklová,Axel Andersson,Nima Rafati,Maria Chatzinikolaou,Fabian J. Theis,Malte D. Luecken,Carolina Wählby,Naveed Ishaque,Mats Nilsson
标识
DOI:10.1038/s41592-025-02617-2
摘要
Abstract The Xenium In Situ platform is a new spatial transcriptomics product commercialized by 10x Genomics, capable of mapping hundreds of genes in situ at subcellular resolution. Given the multitude of commercially available spatial transcriptomics technologies, recommendations in choice of platform and analysis guidelines are increasingly important. Herein, we explore 25 Xenium datasets generated from multiple tissues and species, comparing scalability, resolution, data quality, capacities and limitations with eight other spatially resolved transcriptomics technologies and commercial platforms. In addition, we benchmark the performance of multiple open-source computational tools, when applied to Xenium datasets, in tasks including preprocessing, cell segmentation, selection of spatially variable features and domain identification. This study serves as an independent analysis of the performance of Xenium, and provides best practices and recommendations for analysis of such datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI