ToPoFM: Topology-Guided Pathology Foundation Model for High-Resolution Pathology Image Synthesis with Cellular-Level Control

计算机科学 基础(证据) 图像(数学) 细胞病理学 病理 拓扑(电路) 人工智能 医学 数学 考古 组合数学 历史
作者
Jingxiong Li,Chenglu Zhu,Sunyi Zheng,Pingyi Chen,Yuxuan Sun,Honglin Li,Lin Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3548872
摘要

Synthetic data generation emerges as a strategy to mitigate data scarcity in digital pathology, where complicated tissue and cellular features are correlated with cancer diagnosis. The synthesis of such visuals, however, suffers from limited inter class diversity and scarcity of cellular annotations. Current methodologies struggle with capturing the broad spectrum of pathology features, causing unpredictable objects and defected fidelity. Moreover, discrepancies in image resolution across developmental and operational phases can amplify the distribution shifts, undermining the precision of diagnosis. To address these challenges, we introduce TOpology guided PathOlogy Foundation Model (ToPoFM), a visual foundation model designed for the synthesis of high-resolution pathology images with cellular-level control. Our approach integrates a topology-informed cell arrangement generator to steer large language models for crafting synthetic cell arrangements. We correlate cell arrangement guidance with diffusion model for pathology content generation, then further implement a random sliding inference strategy, merging discrete low-resolution samplings into single high-resolution representation. Our model requires only small patches for training. The efficacy of ToPoFM is demonstrated through extensive experiments, complemented by expert validations, showing high fidelity on data synthesis. Additionally, we underscore the utility of our generated imagery as an augmentation tool, enhancing the performance of downstream tasks, including cancer subtype classification and segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
acid_发布了新的文献求助10
刚刚
葳葳完成签到,获得积分10
4秒前
张平一完成签到 ,获得积分10
6秒前
葳葳发布了新的文献求助10
8秒前
yilin完成签到 ,获得积分10
9秒前
acid_完成签到,获得积分10
9秒前
小元完成签到,获得积分10
9秒前
Wen完成签到 ,获得积分10
11秒前
QhL完成签到,获得积分10
14秒前
Linden_bd完成签到 ,获得积分10
15秒前
tangz完成签到,获得积分20
17秒前
热情依白完成签到 ,获得积分10
17秒前
研究牲完成签到 ,获得积分10
24秒前
和和完成签到,获得积分10
24秒前
小马奔奔完成签到 ,获得积分10
25秒前
ken131完成签到 ,获得积分10
25秒前
拜托你清醒一点完成签到,获得积分10
26秒前
鬼笔环肽应助科研通管家采纳,获得10
29秒前
cdercder应助科研通管家采纳,获得10
29秒前
29秒前
科研通AI5应助科研通管家采纳,获得30
29秒前
29秒前
cdercder应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得10
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
29秒前
MinQi完成签到,获得积分10
36秒前
chichenglin完成签到 ,获得积分10
37秒前
39秒前
drbrianlau完成签到,获得积分10
40秒前
科研通AI5应助BUAAzmt采纳,获得10
43秒前
Clark完成签到,获得积分10
43秒前
洋洋完成签到,获得积分10
44秒前
YHY完成签到,获得积分10
50秒前
深情安青应助斯文的傲珊采纳,获得10
51秒前
XIeXIe完成签到,获得积分10
52秒前
53秒前
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777734
求助须知:如何正确求助?哪些是违规求助? 3323199
关于积分的说明 10213148
捐赠科研通 3038520
什么是DOI,文献DOI怎么找? 1667445
邀请新用户注册赠送积分活动 798139
科研通“疑难数据库(出版商)”最低求助积分说明 758275