材料科学
自愈
光热治疗
涂层
纳米技术
复合材料
超疏水涂料
医学
替代医学
病理
作者
Yuanlong Wu,Lei Dong,Xin Shu,Youfa Zhang,Qianping Ran
标识
DOI:10.1021/acsami.4c22611
摘要
Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (We = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (−15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI