已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Construction and Evaluation of a Novel Nomogram for Predicting Dual Dimensional Frailty in Older Maintenance Haemodialysis Patients

列线图 医学 逻辑回归 心理干预 共病 物理疗法 内科学 护理部
作者
Xu‐Hua Zhou,Ying Zhu,Lin Chen,Yingjun Zhang,Qin Zhang,Mei Shi
出处
期刊:Journal of Clinical Nursing [Wiley]
标识
DOI:10.1111/jocn.17796
摘要

ABSTRACT Objective To construct and evaluate a novel nomogram for predicting the risk of dual dimensional frailty (comorbidity between physical frailty and social frailty) in older maintenance haemodialysis. Methods A cross‐sectional investigation was conducted. A total of 386 older MHD patients were recruited between September and December 2024 from four haemodialysis centres in four tertiary hospitals in Sichuan Province, China. LASSO regression and binary logistic regression were employed to determine the predictors of dual dimensional frailty. The prediction performance of the model was evaluated by discrimination and calibration. The decision curve was utilised to estimate the clinical utility. Internal validation with 1000 bootstrap samples was conducted to minimise overfitting. Results In the overall sample (386 cases), a total of 92 (23.8%) of patients exhibited dual dimensional frailty. Five relevant predictors, including physical activity, self‐perceived health status, ADL impairment, malnutrition, and self‐perceptions of aging, were identified for constructing the nomogram. Internal validation indicated excellent discriminatory power and calibration of the model, while the clinical decision curve demonstrated its remarkable clinical utility. Conclusions The novel nomogram constructed in this study holds promise for aiding healthcare professionals in identifying physical and social frailty risks among older patients on maintenance haemodialysis, potentially informing early and targeted interventions. Relevance to Clinical Practice This nomogram enables nurses to efficiently stratify dual‐dimensional frailty risk during routine assessments, facilitating early identification of high‐risk patients. Its visual output can guide tailored interventions, such as exercise programmes, nutritional support, and counselling, while optimising resource allocation. Patient or Public Contribution Data were collected from self‐reported conditions and patients' clinical information. Reporting Method STROBE checklist was employed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包惜筠完成签到 ,获得积分10
刚刚
刚刚
yuan完成签到 ,获得积分10
1秒前
烟花应助梦雪采纳,获得10
1秒前
tianzml0应助ceeray23采纳,获得30
1秒前
啦啦啦蛤蛤蛤完成签到,获得积分10
1秒前
繁笙完成签到 ,获得积分10
1秒前
1秒前
呆二龙完成签到 ,获得积分10
3秒前
3秒前
大力的宝川完成签到 ,获得积分10
4秒前
4秒前
无畏山海发布了新的文献求助10
5秒前
李健完成签到 ,获得积分10
6秒前
橘子林完成签到,获得积分10
6秒前
eryu25完成签到,获得积分10
8秒前
ho完成签到,获得积分10
8秒前
Lijiahui完成签到 ,获得积分10
8秒前
fufu完成签到 ,获得积分10
9秒前
小羊小羊发布了新的文献求助80
9秒前
何木木完成签到 ,获得积分10
10秒前
强强完成签到 ,获得积分10
10秒前
小二郎应助大饼子圆采纳,获得50
11秒前
李健的小迷弟应助牛马采纳,获得10
12秒前
dkw完成签到,获得积分10
12秒前
obsession完成签到 ,获得积分10
13秒前
tsuki完成签到,获得积分10
16秒前
songjiatian完成签到,获得积分20
17秒前
CC完成签到,获得积分0
17秒前
派大星和海绵宝宝完成签到,获得积分10
19秒前
充电宝应助best贺采纳,获得10
20秒前
小阿沈完成签到,获得积分10
21秒前
王波完成签到 ,获得积分10
23秒前
找文献完成签到 ,获得积分10
23秒前
梦雪完成签到,获得积分10
24秒前
griffon完成签到,获得积分10
24秒前
dali完成签到 ,获得积分10
25秒前
25秒前
27秒前
w1x2123完成签到,获得积分0
27秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385169
求助须知:如何正确求助?哪些是违规求助? 4507833
关于积分的说明 14029166
捐赠科研通 4417710
什么是DOI,文献DOI怎么找? 2426663
邀请新用户注册赠送积分活动 1419356
关于科研通互助平台的介绍 1397766