Ensemble-Learning-Guided Optimization Design for Metal–Organic Framework Adsorbents toward CO Adsorption

化学 吸附 金属有机骨架 金属 化学工程 有机化学 工程类
作者
Wuqing Tao,Wenkai Zhao,Qidong Zhao,Yonghou Xiao
出处
期刊:Inorganic Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.inorgchem.5c00994
摘要

Metal-organic frameworks (MOFs) hold great potential for carbon monoxide (CO) adsorption owing to their large pore volume, diverse periodic network structures, and designability. Machine learning is anticipated to provide optimization parameters for designing high-efficiency MOFs adsorbents, avoiding time-consuming experiments. Here, we proposed an ensemble-learning strategy accounting for multidimensional analysis of features to rationally design pore geometries, structural properties, and synthesis conditions of MOFs toward high performance for CO adsorption. The extreme gradient boosting model exhibited the best predictive performance (R2 > 0.95) under limited data set size. Porous characteristic was identified as a dominant factor in pristine MOFs. Prediction results illustrated that MOFs featuring one-dimensional, two-dimensional, microporous, and isolated pores were optimal for CO adsorption, with 0.4-0.6 cm3/g total pore volume. This enhanced adsorption capacity can be attributed to the shortened molecular diffusion pathways. The relative significance of structural parameters followed: space groups > geometry > topology. The optimal structural configuration involved space group of R3m, binuclear paddle wheel geometry, and scorpionate-like topology. Regarding transition metal-modified MOFs, incorporated Cu(I) demonstrated the strongest binding affinity toward CO, while Fe(II) and Ni(II) could serve as effective binding sites. This work offers a theoretical guidance for designing efficient adsorbents toward CO adsorption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ch_7完成签到,获得积分10
2秒前
3秒前
俭朴的跳跳糖完成签到 ,获得积分10
4秒前
5秒前
6秒前
世说新语发布了新的文献求助10
8秒前
iNk应助lvsehx采纳,获得10
11秒前
英姑应助CC采纳,获得10
11秒前
14秒前
18秒前
714764964发布了新的文献求助10
19秒前
虾虾应助Noel采纳,获得30
20秒前
Iq发布了新的文献求助10
21秒前
舒适的黑裤完成签到,获得积分10
21秒前
小晓完成签到,获得积分10
21秒前
lvsehx完成签到,获得积分10
22秒前
幽默香旋发布了新的文献求助10
22秒前
Chanyl发布了新的文献求助10
23秒前
大脑袋应助快乐朋友采纳,获得30
24秒前
Boochew完成签到,获得积分10
26秒前
Chanyl完成签到,获得积分20
32秒前
bioglia完成签到,获得积分10
33秒前
Akim应助000采纳,获得10
33秒前
33秒前
QinY发布了新的文献求助20
34秒前
俏皮的涵瑶完成签到 ,获得积分10
34秒前
34秒前
36秒前
36秒前
大个应助刘球球采纳,获得10
38秒前
38秒前
40秒前
小狮子发布了新的文献求助10
40秒前
赘婿应助Spongeeeee采纳,获得20
40秒前
超帅的白易完成签到 ,获得积分10
41秒前
英姑应助吴彦祖采纳,获得10
43秒前
43秒前
树林完成签到,获得积分10
44秒前
搜集达人应助Charming采纳,获得10
45秒前
000发布了新的文献求助10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Conceptual Metaphor Theory in World Language Education 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3927503
求助须知:如何正确求助?哪些是违规求助? 3472092
关于积分的说明 10971610
捐赠科研通 3201984
什么是DOI,文献DOI怎么找? 1769101
邀请新用户注册赠送积分活动 857916
科研通“疑难数据库(出版商)”最低求助积分说明 796213