纳米颗粒
计算机科学
喹唑啉
化学
组合化学
纳米技术
材料科学
作者
Fatemeh Amarloo,Rahele Zhiani,Alireza Motavalizadehkakhky,Malihesadat Hosseiny
标识
DOI:10.1038/s41598-025-95930-x
摘要
The conversion of CO2 into valuable materials through multicomponent reactions in the presence of nanocatalysts with high surface area and suitable efficiency has garnered significant attention. Herein, this study is focused on the synthesis and catalytic activity of DFNS-supported zinc titanate nanoparticles for the conversion of CO2 into quinazoline-2,4(1H,3H)-dione derivatives. ZnTiO3 was prepared by a sol-gel process, presenting a novel dandelion-like morphology that allows a significant increase in the surface area and catalytic activity. Detailed characterizations such as EDX for elemental composition, XRD for crystallinity, TEM and SEM for morphology, TGA for thermal stability, and FT-IR for bonding characteristics confirmed the excellent integration of ZnTiO3 into the DFNS. Under optimized conditions, our catalytic protocol achieved a maximum yield of 92% at 70 °C over 3 h in DMF solvent. Systematic optimization of reaction parameters such as solvent type and nanocatalyst loading showed the remarkable efficiency of this nanocatalyst under mild conditions, hence proving to be a strong alternative in the practices of green synthesis. Further tests for heterogeneity confirmed the effective operation of DFNS/ZnTiO3 as an enduring heterogeneous nanocatalyst, recyclability tests showing an 87% efficiency retention after ten cycles. These findings confirm the economic and ecological viability of the nanocatalyst; hence, DFNS/ZnTiO3 represents a versatile platform toward the advancement of CO2 conversion technologies into valued chemical precursors.
科研通智能强力驱动
Strongly Powered by AbleSci AI