Automated Anomaly Detection and Causal Analysis for Civil Aviation Using QAR Data

民用航空 异常检测 计算机科学 数据挖掘 数据科学 航空 工程类 航空航天工程
作者
Xin Dang,Hua Cheng,Chuitian Rong
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:15 (5): 2250-2250 被引量:1
标识
DOI:10.3390/app15052250
摘要

Flight Operations Quality Assurance (FOQA) is an internationally recognized solution to ensure the safety of civil aircraft flights based on Quick Access Recorder (QAR) data. The traditional approach to anomaly detection in civil aviation is to detect the over-limit values of monitoring parameters for each monitoring event based on the standards issued by civil aviation authorities. Usually, for each anomaly detection operation routine, this only works for one monitoring event. Furthermore, the causal analyses for the detected anomaly events are based on the relevant worker’s expertise. In order to improve the efficiency of FOQA, this paper proposes an automated anomaly detection and causal analysis method called MAD-XFP. Due to the unique industry characteristics of QAR data and the requirements of FOQA, feature engineering and hyper-parameter optimization techniques are utilized to enhance the machine learning model. The proposed method can monitor multiple events in one routine and provide a causal analysis. In the causal analysis process, the Shapley additive interpretation method is applied to produce analysis report for detected anomalies. Experimental evaluations are conducted on real civil aviation datasets. The experimental results show that the proposed method can efficiently and automatically detect different abnormal events with high precision in the approach phase and produce preliminary causal analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
cc完成签到 ,获得积分10
2秒前
3秒前
3秒前
烟花应助小丸子采纳,获得10
3秒前
刘禹彤发布了新的文献求助20
4秒前
4秒前
zoey发布了新的文献求助10
6秒前
魁梧的元蝶完成签到 ,获得积分10
6秒前
synthia发布了新的文献求助10
6秒前
cx关注了科研通微信公众号
6秒前
6秒前
7秒前
8秒前
猛男完成签到,获得积分10
8秒前
8秒前
林大侠完成签到,获得积分10
9秒前
10秒前
沛蓝完成签到,获得积分10
10秒前
虚心醉蝶完成签到 ,获得积分10
11秒前
hiipaige发布了新的文献求助10
11秒前
哎呀完成签到 ,获得积分10
11秒前
惊蛰发布了新的文献求助10
12秒前
张博文发布了新的文献求助10
14秒前
14秒前
可爱的函函应助hiipaige采纳,获得10
14秒前
机智的翠曼完成签到,获得积分10
17秒前
汉堡包应助夏天与葡萄采纳,获得10
17秒前
搜集达人应助zoey采纳,获得10
18秒前
麋鹿完成签到 ,获得积分10
19秒前
kikipooop发布了新的文献求助10
20秒前
21秒前
科研通AI5应助黑嘶采纳,获得30
21秒前
24秒前
SciGPT应助陶醉的问薇采纳,获得10
25秒前
852应助何大春采纳,获得10
25秒前
linda发布了新的文献求助10
26秒前
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802223
求助须知:如何正确求助?哪些是违规求助? 3348011
关于积分的说明 10335830
捐赠科研通 3063897
什么是DOI,文献DOI怎么找? 1682293
邀请新用户注册赠送积分活动 807968
科研通“疑难数据库(出版商)”最低求助积分说明 763997