Intelligent Thermal Condition Monitoring for Predictive Maintenance of Gas Turbines Using Machine Learning

燃气轮机 预测性维护 计算机科学 热的 状态监测 可靠性工程 环境科学 汽车工程 工程类 机器学习 机械工程 气象学 电气工程 物理
作者
Sadiq T. Bunyan,Zeashan Hameed Khan,Luttfi A. Al-Haddad,Hayder A. Dhahad,Mustafa I. Al-Karkhi,Ahmed Ali Farhan Ogaili,Zainab T. Al‐Sharify
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:13 (5): 401-401
标识
DOI:10.3390/machines13050401
摘要

Gas turbines play a crucial role in power generation and aviation, where effective maintenance strategies are essential to ensure reliability. Traditional condition monitoring methods often rely on scheduled inspections, leading to potential downtime and increased maintenance costs. This study presents an AI-driven approach for thermal condition monitoring and the predictive maintenance of gas turbines using machine learning. An Extreme Gradient Boosting (XGBoost)-based classification model was developed to distinguish between healthy and faulty operating conditions based on thermal load data. The dataset, collected over six months from strategically placed thermocouples in the exhaust gas section, was processed to extract key statistical features such as mean temperature, standard deviation, and skewness. The proposed XGBoost model achieved a classification accuracy (CA) of 97.2%, with an F1-score of 96.8%, precision of 97.5%, and recall of 96.1%, demonstrating its effectiveness in detecting anomalies. The results indicate that the integration of machine learning in gas turbine monitoring significantly enhances fault detection capabilities, enabling proactive maintenance strategies and reducing the risk of critical failures. This study provides valuable insights for data-driven maintenance strategies, optimizing operational efficiency and extending the lifespan of gas turbine components. Future work will focus on real-time deployment and further validation with extended datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jgpiao发布了新的文献求助10
刚刚
1秒前
遇见完成签到,获得积分10
2秒前
3秒前
zzzzzzzzzzzzb完成签到,获得积分10
6秒前
7秒前
桐桐应助jgpiao采纳,获得10
7秒前
zx完成签到,获得积分10
7秒前
8秒前
11秒前
12秒前
14秒前
14秒前
14秒前
15秒前
充电宝应助nana采纳,获得10
15秒前
liuweiwei发布了新的文献求助10
17秒前
Thea发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
善学以致用应助Bill采纳,获得10
19秒前
大模型应助戌塔采纳,获得30
21秒前
舟舟完成签到,获得积分10
23秒前
soapffz完成签到,获得积分10
24秒前
25秒前
25秒前
香蕉觅云应助李春晓采纳,获得10
27秒前
超帅的薇姐完成签到,获得积分10
27秒前
29秒前
健忘芷珊发布了新的文献求助10
30秒前
31秒前
英吉利25发布了新的文献求助30
32秒前
32秒前
34秒前
36秒前
yydy发布了新的文献求助10
36秒前
英俊的铭应助鳗鱼行天采纳,获得10
38秒前
42秒前
yy完成签到,获得积分10
46秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084113
求助须知:如何正确求助?哪些是违规求助? 3623230
关于积分的说明 11493787
捐赠科研通 3337754
什么是DOI,文献DOI怎么找? 1835001
邀请新用户注册赠送积分活动 903663
科研通“疑难数据库(出版商)”最低求助积分说明 821776