IXGS-Intraoperative 3D Reconstruction from Sparse, Arbitrarily Posed Real X-rays

适定问题 计算机视觉 计算机科学 人工智能 数学 数学分析
作者
Sascha Jecklin,Aidana Massalimova,Ruyi Zha,Lilian Calvet,Christoph J. Laux,Mazda Farshad,Philipp Fürnstahl
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-6490626/v1
摘要

Abstract Recently, supervised learning approaches have gained attention for reconstructing 3D spinal anatomy from sparse fluoroscopic data, significantly reducing reliance on radiation-intensive 3D imaging systems. However, these methods typically require large amounts of annotated training data and may struggle to generalize across varying patient anatomies or imaging conditions. Instance-learning approaches like Gaussian splatting could offer an alternative by avoiding extensive annotation requirements. While Gaussian splatting has shown promise for novel view synthesis, its application to sparse, arbitrarily posed real intraoperative X-rays has remained largely unexplored. This work addresses this limitation by extending the 𝑅2-Gaussian splatting framework to reconstruct anatomically consistent 3D volumes under these challenging conditions. We introduce an anatomy-guided radiographic standardization step using style transfer, improving visual consistency across views, and enhancing reconstruction quality. Notably, our framework requires no pretraining, making it inherently adaptable to new patients and anatomies. We evaluated our approach using an ex-vivo dataset. Expert surgical evaluation confirmed the clinical utility of the 3D reconstructions for navigation, especially when using 20 to 30 views, and highlighted the standardization’s benefit for anatomical clarity. Benchmarking via quantitative 2D metrics (PSNR/SSIM) confirmed performance trade-offs compared to idealized settings, but also validated the improvement gained from standardization over raw inputs. This work demonstrates the feasibility of instance-based volumetric reconstruction from arbitrary sparse-view X-rays, advancing intraoperative 3D imaging for surgical navigation. Code and data to reproduce our results is made available at https: //github.com/MrMonk3y/IXGS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
Lucky完成签到 ,获得积分10
2秒前
欢呼墨镜完成签到,获得积分10
3秒前
Hover完成签到,获得积分0
4秒前
ning完成签到,获得积分10
4秒前
科研通AI2S应助缓慢宛海采纳,获得10
5秒前
求助人员发布了新的文献求助10
5秒前
桐桐应助MYhang采纳,获得10
5秒前
小柯基学从零学起完成签到 ,获得积分10
5秒前
6秒前
6秒前
zhongqiyu完成签到 ,获得积分10
7秒前
阔达的秀发完成签到,获得积分10
7秒前
小二郎应助zhendezy采纳,获得10
8秒前
ma完成签到,获得积分10
8秒前
Handsome__oov2完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
抹缇卡完成签到 ,获得积分10
9秒前
10秒前
GC发布了新的文献求助10
10秒前
Owen应助种籽采纳,获得20
10秒前
ping完成签到 ,获得积分10
11秒前
Negev完成签到,获得积分10
11秒前
杨成完成签到,获得积分10
12秒前
tiantiantian完成签到,获得积分10
12秒前
天天快乐应助SCIER采纳,获得10
12秒前
风中的奎完成签到,获得积分10
13秒前
木木完成签到,获得积分10
13秒前
14秒前
考马斯亮蓝完成签到 ,获得积分10
15秒前
15秒前
15秒前
折耳根榨汁清凉补完成签到,获得积分20
17秒前
苦咖啡行僧完成签到 ,获得积分10
17秒前
MYhang发布了新的文献求助10
18秒前
香蕉觅云应助孤独的冰彤采纳,获得10
18秒前
19秒前
nanaliuyun完成签到,获得积分10
20秒前
所所应助GC采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600235
求助须知:如何正确求助?哪些是违规求助? 4685911
关于积分的说明 14840612
捐赠科研通 4675789
什么是DOI,文献DOI怎么找? 2538581
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471162