电阻随机存取存储器
神经形态工程学
重置(财务)
集合(抽象数据类型)
记忆电阻器
人工神经网络
电导
突触
计算机科学
尖峰神经网络
计算机硬件
人工智能
物理
电气工程
工程类
神经科学
生物
电压
程序设计语言
凝聚态物理
金融经济学
经济
作者
Sandip Lashkare,S. Chouhan,Tanmay Chavan,Ashwin Bhat,Pankaj Kumbhare,Udayan Ganguly
标识
DOI:10.1109/led.2018.2805822
摘要
Resistance random access memories (RRAM) or memristors with an analog change of conductance are widely explored as an artificial synapse, e.g., Pr 0.7 Ca 0.3 MnO 3 (PCMO) RRAM-based synapses. In addition to synapses, scaled neurons are essential to enable a neuromorphic hardware. In this letter, we propose a PCMO RRAM for integrate and fire (IF) neuron. The analog conductance increase during SET process enables integration function. Upon exceeding a conductance threshold (i.e., fire) during a READ operation, a hard RESET is performed to reduce the conductance. The SET, READ, and RESET are performed in different phases of a clock to enable a PCMO for IF neuron. The availability of a non-volatile PCMO-based synapse makes PCMO for IF neuron attractive. Finally, PCMO-based neuron in spiking neural network yields software-equivalent classification accuracy as demonstrated on standard Fischer's Iris flower data set.
科研通智能强力驱动
Strongly Powered by AbleSci AI