An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis

Softmax函数 计算机科学 人工智能 深度学习 断层(地质) 特征(语言学) 传感器融合 人工神经网络 深信不疑网络 自编码 故障检测与隔离 模式识别(心理学) 机器学习 地质学 哲学 地震学 执行机构 语言学
作者
Jie Liu,Youmin Hu,Yan Wang,Bo Wu,Jikai Fan,Zhongxu Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:29 (5): 055103-055103 被引量:110
标识
DOI:10.1088/1361-6501/aaaca6
摘要

The diagnosis of complicated fault severity problems in rotating machinery systems is an important issue that affects the productivity and quality of manufacturing processes and industrial applications. However, it usually suffers from several deficiencies. (1) A considerable degree of prior knowledge and expertise is required to not only extract and select specific features from raw sensor signals, and but also choose a suitable fusion for sensor information. (2) Traditional artificial neural networks with shallow architectures are usually adopted and they have a limited ability to learn the complex and variable operating conditions. In multi-sensor-based diagnosis applications in particular, massive high-dimensional and high-volume raw sensor signals need to be processed. In this paper, an integrated multi-sensor fusion-based deep feature learning (IMSFDFL) approach is developed to identify the fault severity in rotating machinery processes. First, traditional statistics and energy spectrum features are extracted from multiple sensors with multiple channels and combined. Then, a fused feature vector is constructed from all of the acquisition channels. Further, deep feature learning with stacked auto-encoders is used to obtain the deep features. Finally, the traditional softmax model is applied to identify the fault severity. The effectiveness of the proposed IMSFDFL approach is primarily verified by a one-stage gearbox experimental platform that uses several accelerometers under different operating conditions. This approach can identify fault severity more effectively than the traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助殷少华采纳,获得10
1秒前
科研通AI5应助boshi采纳,获得10
3秒前
无机盐完成签到,获得积分10
3秒前
7秒前
勿明应助企鹅乌云采纳,获得30
7秒前
烤鸭发布了新的文献求助10
12秒前
kingwhitewing完成签到,获得积分10
17秒前
挖掘机应助tjr采纳,获得50
17秒前
车间我完成签到 ,获得积分10
19秒前
20秒前
科研通AI2S应助小帅采纳,获得10
21秒前
23秒前
23秒前
nicaicai发布了新的文献求助10
26秒前
雪白晓夏发布了新的文献求助10
26秒前
求帮助完成签到,获得积分10
26秒前
艺善艺善亮晶晶完成签到,获得积分10
27秒前
薇儿发布了新的文献求助10
27秒前
高序完成签到,获得积分10
27秒前
西门子云完成签到,获得积分10
28秒前
依依完成签到 ,获得积分10
32秒前
顾矜应助不锈钢臭宝宝采纳,获得10
33秒前
云华完成签到,获得积分10
34秒前
脸小呆呆完成签到 ,获得积分10
34秒前
38秒前
我是老大应助tt采纳,获得10
38秒前
认真的雪完成签到,获得积分10
41秒前
刘梓发布了新的文献求助10
42秒前
JamesPei应助科研通管家采纳,获得10
42秒前
mmichaell应助科研通管家采纳,获得10
42秒前
等待冬亦应助科研通管家采纳,获得10
42秒前
科研通AI5应助科研通管家采纳,获得30
42秒前
owldan完成签到,获得积分10
43秒前
44秒前
47秒前
可耐的摩托完成签到,获得积分10
48秒前
49秒前
50秒前
53秒前
Chunlan发布了新的文献求助10
53秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841914
求助须知:如何正确求助?哪些是违规求助? 3383975
关于积分的说明 10532095
捐赠科研通 3104184
什么是DOI,文献DOI怎么找? 1709543
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878