电解质
脉冲场梯度
材料科学
共聚物
扩散
层状结构
锂(药物)
离子
各向异性
分析化学(期刊)
高分子化学
物理化学
化学
热力学
聚合物
有机化学
复合材料
电极
内分泌学
物理
医学
量子力学
作者
Ksenia Timachova,Irune Villaluenga,Lisa Cirrincione,Mallory Gobet,Rajashree Bhattacharya,Xi Jiang,John Newman,Louis A. Madsen,Steve Greenbaum,Nitash P. Balsara
标识
DOI:10.1021/acs.jpcb.7b11371
摘要
Nanostructured block copolymer electrolytes have the potential to enable solid-state batteries with lithium metal anodes. We present complete continuum characterization of ion transport in a lamellar polystyrene-b-poly(ethylene oxide) copolymer/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte as a function of salt concentration. Electrochemical measurements are used to determine the Stefan–Maxwell salt diffusion coefficients D+,0, D−,0, and D+,−. Individual self-diffusion coefficients of the lithium- and TFSI-containing species were measured by pulsed-field gradient NMR (PFG-NMR). The NMR data indicate that salt diffusion is locally anisotropic, and this enables determination of a diffusion coefficient parallel to the lamellae, D∥, and a diffusion coefficient through defects in the lamellae, D⊥. We quantify anisotropic diffusion by defining an NMR morphology factor and demonstrate that it is correlated to defect density seen by transmission electron microscopy. We find agreement between the electrochemically determined Stefan–Maxwell diffusion coefficients and the diffusion coefficient D⊥ determined by PFG-NMR. Our work indicates that the performance of nanostructured block copolymer electrolytes in batteries is strongly influenced by ion transport through defects.
科研通智能强力驱动
Strongly Powered by AbleSci AI