Concept relation extraction using Naïve Bayes classifier for ontology-based question answering systems

计算机科学 答疑 本体论 朴素贝叶斯分类器 情报检索 人工智能 数据挖掘 关系抽取 基于本体的数据集成 本体推理层 本体对齐 解析 信息抽取 自然语言处理 语义网 猫头鹰-S 认识论 语义Web堆栈 哲学 支持向量机
作者
Girish Kumar,G. Zayaraz
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:27 (1): 13-24 被引量:32
标识
DOI:10.1016/j.jksuci.2014.03.001
摘要

Domain ontology is used as a reliable source of knowledge in information retrieval systems such as question answering systems. Automatic ontology construction is possible by extracting concept relations from unstructured large-scale text. In this paper, we propose a methodology to extract concept relations from unstructured text using a syntactic and semantic probability-based Naïve Bayes classifier. We propose an algorithm to iteratively extract a list of attributes and associations for the given seed concept from which the rough schema is conceptualized. A set of hand-coded dependency parsing pattern rules and a binary decision tree-based rule engine were developed for this purpose. This ontology construction process is initiated through a question answering process. For each new query submitted, the required concept is dynamically constructed, and ontology is updated. The proposed relation extraction method was evaluated using benchmark data sets. The performance of the constructed ontology was evaluated using gold standard evaluation and compared with similar well-performing methods. The experimental results reveal that the proposed approach can be used to effectively construct a generic domain ontology with higher accuracy. Furthermore, the ontology construction method was integrated into the question answering framework, which was evaluated using the entailment method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
香蕉觅云应助Jane采纳,获得10
2秒前
小马甲应助Wachlb采纳,获得10
2秒前
3秒前
世间再无延毕完成签到,获得积分10
3秒前
别再困了完成签到,获得积分10
3秒前
深海鱼发布了新的文献求助10
3秒前
桐桐应助栗心采纳,获得10
4秒前
上官若男应助若水采纳,获得30
4秒前
华仔应助ahiui采纳,获得10
4秒前
Lily发布了新的文献求助10
4秒前
4秒前
小杭76发布了新的文献求助10
6秒前
JamesPei应助muyiqiao采纳,获得10
7秒前
邵大王完成签到,获得积分20
9秒前
呼君伟完成签到,获得积分10
9秒前
9秒前
ding应助biubiu0417采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
Koalas应助无辜的夏山采纳,获得20
12秒前
12秒前
小二郎应助qiu采纳,获得10
13秒前
情怀应助魁梧的盼雁采纳,获得10
16秒前
科研通AI2S应助三横采纳,获得10
16秒前
qi发布了新的文献求助10
17秒前
玲玲玲发布了新的文献求助10
17秒前
止咳宝完成签到,获得积分10
17秒前
啦啦啦啦完成签到,获得积分10
19秒前
儒雅老太发布了新的文献求助10
19秒前
zxy应助唐泽雪穗采纳,获得40
21秒前
FashionBoy应助淡然冬灵采纳,获得10
21秒前
22秒前
qi发布了新的文献求助10
24秒前
charles发布了新的文献求助60
25秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
林小完成签到,获得积分10
26秒前
浮游应助不吃辣椒采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5060095
求助须知:如何正确求助?哪些是违规求助? 4284538
关于积分的说明 13351710
捐赠科研通 4102130
什么是DOI,文献DOI怎么找? 2245997
邀请新用户注册赠送积分活动 1251710
关于科研通互助平台的介绍 1182418