热氧化
氧化剂
臭氧
硅
化学
氧化物
无机化学
电化学
动力学
氧化还原
分析化学(期刊)
物理化学
电极
环境化学
有机化学
物理
量子力学
作者
Florimond De Smedt,Chris Vinckier,Ingrid Cornelissen,Stefan De Gendt,Marc Heyns
摘要
The oxidation of silicon using ozonated, deionized water solutions was investigated as a function of several parameters: reaction time, pH, ozone concentration, temperature, and influence of anions. The oxidation of silicon was dependent on ozone concentration especially near neutral pH. This concentration dependence disappears at concentrations greater than 15 mg/L ozone. No temperature effect was found between 20 and 50°C. Lowering the pH leads to a less pronounced concentration dependence with no specific anion effect between HCl or . The oxidation of silicon by ozonated solutions does not lead to extensive roughening of the silicon surface as shown by atomic force microscopy measurements. Various thermal oxidation models were evaluated and the Fehnler expression represents the experimental data fairly well. The overall oxidation thus follows logarithmic growth kinetics. It is proposed that ozone dissociates at the interface in a one‐step reaction forming the oxidizing species, namely, . This radical diffuses through the layer under the influence of an electric field which develops over the oxide layer. The field‐imposed drift is the limiting factor in the oxidation process. The bulk chemistry of the ozonated solutions is of no importance to the oxidation of silicon. The initial oxidation rate, defined at an oxidation time of 6 s, was dependent on the ozone concentration below 15 mg/L and leveled off above this concentration as it was limited by the field‐imposed drift of the oxidation precursor. © 2000 The Electrochemical Society. All rights reserved.
科研通智能强力驱动
Strongly Powered by AbleSci AI