Migraine: A missing link between somatic symptoms and major depressive disorder

偏头痛 重性抑郁障碍 共病 躯体化 焦虑 萧条(经济学) 精神科 惊恐障碍 流行病学研究中心抑郁量表 汉密尔顿焦虑量表 临床心理学 心理学 医学 抑郁症状 心情 经济 宏观经济学
作者
Ching‐I Hung,Chia-Yih Liu,Yuanming Cheng,Shuu‐Jiun Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:117 (1-2): 108-115 被引量:36
标识
DOI:10.1016/j.jad.2008.12.015
摘要

Research into the role of migraine in somatic symptoms of major depressive disorder (MDD) has long been neglected; hence, the aim of this study was to compare the impact of migraine and anxiety comorbidities on the somatic symptoms of patients with MDD. Consecutive psychiatric outpatients with MDD in a medical center were enrolled. MDD and anxiety disorders were diagnosed using the Structured Clinical Interview for DSM-IV-TR; migraine was diagnosed according to the International Classification of Headache Disorders, 2nd edition. Four scales were administered and evaluated: the Hamilton Depression Rating Scale, the Depression and Somatic Symptoms Scale, the somatization subscale of the Symptom Checklist-90-Revised, and the Hospital Anxiety and Depression Scale. Multiple linear regressions were used to find the most powerful comorbidities in predicting somatic symptoms. One hundred and fifty five patients (106F, 49M) completed the study. Subjects with migraine had higher somatic, depression and anxiety severities. Panic disorder was the most important factor when predicting somatic severity among anxiety comorbidities. Migraine (R2 change = 0.28 to 0.04, p < .01) was the strongest independent factor in predicting somatic severity, even after controlling for anxiety comorbidities and demographic variables. This study used certain exclusion criteria when enrolling MDD outpatients, possibly introducing bias. Comorbidity with migraine was found to be associated with more somatic symptoms in patients with MDD, and migraine was a strong and independent predictor for the somatic symptoms of MDD. Future studies on the somatic symptoms of MDD should therefore take migraine into consideration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芝士完成签到 ,获得积分10
1秒前
热心又蓝完成签到,获得积分10
1秒前
JamesTYD发布了新的文献求助10
2秒前
江楠完成签到,获得积分10
2秒前
jin完成签到,获得积分10
3秒前
4秒前
Ruby-Geo发布了新的文献求助10
6秒前
6秒前
weishen完成签到,获得积分0
7秒前
ljs完成签到,获得积分10
8秒前
卷卷发布了新的文献求助10
9秒前
娜孜完成签到,获得积分20
11秒前
zbb发布了新的文献求助10
11秒前
传奇3应助Amosummer采纳,获得10
11秒前
等待冬亦应助YCI采纳,获得10
12秒前
ANG完成签到,获得积分10
13秒前
hmf1995完成签到 ,获得积分10
15秒前
隐形曼青应助黎哈哈哈采纳,获得10
17秒前
dominic12361完成签到 ,获得积分10
18秒前
田様应助无情的黑猫采纳,获得10
18秒前
Ruby-Geo完成签到,获得积分10
18秒前
20秒前
兴奋平松完成签到 ,获得积分10
21秒前
Lucas应助garyaa采纳,获得10
21秒前
23秒前
23秒前
23秒前
yyyyyyyyyy发布了新的文献求助20
23秒前
呜呼完成签到,获得积分10
26秒前
whateverzm发布了新的文献求助30
27秒前
李小聪完成签到,获得积分10
27秒前
tt完成签到 ,获得积分10
27秒前
棠棠发布了新的文献求助10
27秒前
扒开皮皮发布了新的文献求助10
27秒前
ANG发布了新的文献求助10
29秒前
29秒前
完美世界应助绝望核弹采纳,获得10
29秒前
32秒前
二三应助科研通管家采纳,获得10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377507
关于积分的说明 10498840
捐赠科研通 3096984
什么是DOI,文献DOI怎么找? 1705397
邀请新用户注册赠送积分活动 820539
科研通“疑难数据库(出版商)”最低求助积分说明 772123